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PREFACE 

 
In the course Transport Phenomena the fundamentals of transport of momentum, 
mass and energy are introduced and applied, aiming to understand and describe 
phenomena in situations encountered in industrial (engineering) practice and in daily 
life. Formulating the appropriate microscopic and macroscopic balances is thereby the 
basis for all activities and has proven to be a very powerful concept, which can be 
successfully applied in many (chemical) engineering disciplines. 
 
To arrive at a good level of understanding of Transport Phenomena, careful study of 
the presented theory in this reader is required. Probably even more important is 
working on the problems provided in the corresponding exercise bundle. Trying to 
analyze and solve the problem statements yourself and discussion of your findings with 
colleagues is an effective way to educate yourself in Transport Phenomena. 
 
In the module Transport Phenomena of the Chemical Engineering education at the 
University of Twente, this course is integrated with a course on (numerical) modeling, 
in which modeling skills are developed and applied to above mentioned situations 
derived from physical technology. Altogether, transport phenomena theory and 
numerical modeling skills, they should enable students to analyze and understand the 
basics of transport phenomena and develop the competence to model and/or design 
novel systems, based on sound fundamentals. With experiments (in the form of a 
practicum and as part of the final project) the link between theory and practice is 
further enforced. In the project, skills of problem analysis, systematic approach, 
recognizing the appropriate transport phenomena, formulating and solving (modeling) 
the correct balances and reporting are further integrated. 
 
 
 
 
Prof.dr.ir. D.W.F. Brilman 
 

Dr.ir. M.A. van der Hoef 
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PHYSICAL TRANSPORT PHENOMENA 

1 PHYSICAL TRANSPORT PHENOMENA 

 

1.1 Introduction 

In practice, both qualitative and quantitative ways of approach play a significant role in the 
design of process apparatus. In qualitative approaches, designs that are considered 
economically viable from experience are selected by means of qualitative considerations.  
However, to come to a final choice, a quantitative approach by means of mathematical 
models is essential.  The quantitative considerations are (also) based on the conservation 
laws for mass, momentum1) and energy.  In the field of transport phenomena, these laws 
are used extensively in dealing with problems.  
 
In the design of process apparatus, one is confronted with systems that are not in 
thermodynamic equilibrium; there is exchange of mass, momentum and energy.  Classical 
thermodynamics only predicts to which state of equilibrium the system strives and not the 
rate with which this equilibrium is reached.  The field of physical transport phenomena 
occupies itself with the prediction of the velocity with which thermodynamic equilibrium is 
reached within a system.  One is specifically interested in the velocity of transport processes 
in order to come to the design (determination of the main dimensions) of process 
apparatus. 
 

1.2 Laws of Conservation 

Before we go over to the formulation of conservation laws, it is of great importance that we 
ask the following questions: 
 
a) What is transported?  
Is there only transport of material, momentum or energy, or does combined transport 
occur?  In process apparatuses there is often combined transport of mass, momentum and 
energy. 

 
b) Which transport mechanisms play a role?  
A provisional differentiation can be made between convective and molecular transport2). 
Convective transport is transport by carrying along (convection); a fluid transports mass 
(fluid or eventually a substance dissolved in a fluid), momentum or energy by displacing 
itself. 
 

 
1) Because momentum is a vector, one can generally formulate 3 momentum balances (x-momentum 
balance, y-momentum balance and z-momentum balance in Cartesian co-ordinates). 
2) At a later stage, we will also encounter radiation. 
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c) Which variables are involved? 
It is important to get an overview of the variables with which the considered system can be 
described unambiguously.  If n variables play a role, one would generally also have to 
formulate n equations (conservation laws). 
 
d) On which scale does the process occur? 
In the formulation of conservation laws, the scale on which the process occurs plays an 
important role. 
 
Physical technology is based on three empirical laws: the law of the conservation of mass 
(Lavoisier), momentum (Newton) and energy (Joule). An account should be set up for the 
three physical quantities concerning a chosen volume (the so-called control volume) that 
results in the mass balance, momentum balance and energy balance, respectively.  For the 
choice of a suitable (according to form and size) control volume, a good physical intuition is 
essential.  Considering the dimensions of the control volume, one can differentiate between 
macroscopic balances and microscopic balances. 
 

1.3 Macroscopic balances 

If we are interested in the macroscopic characteristics of the system, such as the mean value 
of a quantity in a chosen control volume, we set up a balance for the specific unit over the 
whole control volume.  Balances over an apparatus (distillation column, chemical reactor) 
or a factory belong to this category. 
 
The conservation laws can be generally formulated in words as follows (also see Fig. 1.1):  
 
increase in quantity X in V per time unit =  ingoing stream of X – outgoing stream of X  

+ production of X in V per time unit 

 
For the formulation of the balance, X is expressed as a quantity per unit of volume: 
- Transport of mass :  (kg/m3) 
- Transport of component i :  (kmol/ m3) 

- Transport of thermal energy :  (J/ m3) 
- Transport of momentum :  (N.s/ m3=kg/(m2.s)) 

The advantage of this approach is that we only have to formulate one balance that is valid 
for different transport processes. 

ρ=X

icX =

uX ρ=
vX ρ=
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Fig. 1.1.  An open system with simultaneous input, output and production of X. 

 
Definitions: 

 : Respective In and outgoing volume streams in m3/s. 

V : Volume (m3). 
r : Quantity of X produced per volume unit and per time unit. 

 : Respective in and outgoing quantities of X per volume unit. 

 
In formula form, the general balance reads: 
 

                                                         (1.1) 

 
As an explanation of this general balance formulation, the following two specific examples 
will be shown: 

- A macroscopic heat balance for a well-stirred tank supplied with a heating spiral. 
- A macroscopic momentum balance for the streaming of a fluid through a pipe with 

a hooked bend. 
 
 
Example of a macroscopic heat balance for a well stirred, streamed through tank supplied 
with a heating spiral. 
 

As a first example we will set-up a macroscopic heat balance for a well stirred, closed tank 
that was initially completely filled with cold water of a uniform temperature T0 (see Fig. 
1.2.). From t=0, warm water of a constant temperature Tin is added with a volume flow of 

, while water is drained from the tank with a flow of . The water drainage is such 

that the tank remains completely filled. In addition, an electrical heating element through 
which a power of  (W) is supplied to the liquid, is connected at a time, t=0. The tank is 

stirred very well, so that no differences in temperature exist. The density of the water ρ and 
the heat capacity Cp are supposed to be constant. 

outvinv ,, ,ΦΦ

outin XX ,

rVXXXV
dt
d

outoutvininv +Φ−Φ= ,,)(

inv,Φ outv,Φ

wΦ

CONTROL VOLUME  
 

V 
 
 
 

inv,Φ

inX

outv,Φ

outX
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 Fig. 1.2.  A well stirred tank supplied with a heating spiral with powerw 
 
A heat balance over the tank V results in (with constant ): 

 

   (1.2) 

 
Note that the power w , supplied by the heating spiral, appears as a production term in the 
heat balance (1.2).  If it is assumed that the content of the tank is ideally mixed, the mean 
fluid temperature T in the tank is equal to the outgoing temperature Tout of the fluid: 
 
         (1.3) 

 
Furthermore, for a tank that is completely filled with liquid, it is valid, according to the law 
of the conservation of mass, that the ingoing and outgoing mass streams are equal (check 
this yourself by setting up a mass balance over the tank): 
 

 out,vin,v Φρ=Φρ        (1.4) 

 
which for constant density implies that the in- and outgoing volume streams are equal.  
Under this and the previous assumptions, equation (1.2) is reduced to the following simple 
first order differential equation: 
 

 ( ) ( )
VC

TT
V

T
dt
d

p

w
outin

v
out ρ

Φ
+−

Φ
=      (1.5) 

 
with the initial boundary condition: 
 
 t = 0:    Tout = T0       (1.6) 

pCρ

( ) ( ) woutpoutvinpinvp TCTCV
dt
TdC Φ+Φ−Φ=







ρρρ ,,

outTT =

inv,Φ

inX

outv,Φ

outX

t=0   T=T0 

 

V 

wΦ
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The solution of (1.5) with initial boundary condition (1.6) gives: 

 





 Φ
−=

−
Φρ

Φ
+

−
Φρ

Φ
+

t
V

exp
T

C
T

T
C

T
v

0
vp

w
in

out
vp

w
in

     (1.7a) 

 
Note that the effect of the electrical heating spiral is equivalent to an increase of the ingoing 
temperature ∆Tin with: 
 

 
vp

w
in C

T
Φρ

Φ
=∆        (1.7b) 

 
Check by yourself what the outgoing temperature of the water T becomes after a very long 
time. Does the result correspond to your expectation? 
 
 
Example of a macroscopic momentum balance for the streaming of a fluid through a pipe 
with a hooked bend. 
 
As a second example we consider the streaming of a fluid through a pipe with a hooked 

bend (See Fig 1.3).  We want to calculate the force (size and direction)  that the 

streaming fluid exerts on the bend.  We assume the diameter of the pipe to be constant. 
Besides, we neglect the friction between the streaming fluid and the (inside) wall of the 
pipe.  We furthermore assume that no velocity differences exist over the diameter of the 
pipe at the entrance “1” and the exit “2”. 
 
In the previous example, the choice of the control volume was obvious: the tank with 
volume V. Here a suitable choice for the control volume would be the fluid volume that 
finds itself between the points of reference “1” and “2” in the pipe.  Apart from the 
specification of the control volume, a system of axes must be chosen; one possible choice 
is given in the following figure. 
 

wfR →
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 Fig. 1.3.  Streaming of a fluid through a conduit with a hooked bend. 

The force  can be separated into  and , being the respective forces 
that the fluid exerts on the bend in the x and y directions.  If these two components of 

 are known, then we know the size and direction of .  The starting point for 
the calculation of  and  is a momentum balance for the x and y directions, 
respectively.  
 
Momentum balance for the x direction: 

 ( ) ( ) ( ) wf,xoutxout,vinxin,vx RvvVv
dt
d

→−ρΦ−ρΦ=ρ    (1.8) 

 
 

Momentum balance for the y direction: 
 

 ( ) ( ) ( ) wf,youtyout,vinyin,vy RvvVv
dt
d

→−ρΦ−ρΦ=ρ    (1.9) 

 
Note that  and  appear with a minus sign in (1.8) and (1.9) respectively, as 

they are to be regarded as negative momentum production terms.  Filling the quantities 
defined in Fig. 1.3 into equations (1.8) and (1.9) after combination with the mass balance 
(check this yourself) gives, in the steady-state, the following reduced momentum 
equations: 

 
 wf,x2m Rv00 →−Φ−=      (1.10a) 

 
 wf,y1m R0v0 →−−Φ=      (1.10b) 

 
With the help of equations (1.10a) and (1.10b) the respective x and y components of the 

asked force can be calculated. For the size of the resulting force , it is simple to derive: 

 

       (1.11) 

 

wfR →

wfxR →,

wfyR →,

“2”

“1” y
x

v2

v1

wfR → wfxR →, wfyR →,

wfR → wfR →

wfxR →, wfyR →,

wfxR →, wfyR →,

wfR →

2
2

2
1 vvR mwf +Φ=→
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As a last example of a macrobalance, a general energy balance will be derived that is 
actually a generalisation of the first law of the thermodynamics. According to this first law 
of thermodynamics: 
 
the increase of the internal energy of a system per time unit = the heat added to the 
system per time unit + the external work done one the system per time unit 
 
Or in formula form: 
 

 WQ
dt

dU
+=         (1.12) 

 
where Q is the heat added to the system per time unit and W is the external work done on 
the system per time unit. For a streaming medium or a system that is streamed through, 
the internal energy U and the work done must be extended. It is furthermore meaningful 
to add the internal energy per mass or volume unit. We define u as the internal energy per 
mass unit (dimension of u: J/kg). For the internal energy of a streaming medium, the kinetic 
energy and the potential energy must be added to get the total energy content. Expressed 
as total energy per mass unit e (dimension of e: J/kg), it thus gives: 
 

 ghv
2
1ue 2 ++=        (1.13) 

 

or expressed as total energy per volume unit  (dimension of : J/m3): 
 

 ghv
2
1ue 2 ρ+ρ+ρ=ρ       (1.14) 

 

The heat added to the system per time unit will be indicated byw. With this adaptation, 
we can formulate the following general balance for total (internal + kinetic + potential) 
energy: 
 

 

( )

w
out

2
out,v

in

2
in,v

2

Wghv
2
1u

ghv
2
1uVghv

2
1u

dt
deV

dt
d

Φ++













 ++ρΦ−















 ++ρΦ=














 ++ρ=ρ

 (1.15a) 

 
The pressure work done on the system is often split from the work term W in piping 
systems, so that (1.15a) can also be written as: 
 

eρ eρ
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( )

weoutout,vinin,v
out

2
out,v

in

2
in,v

2

Wppghv
2
1u

ghv
2
1uVghv

2
1u

dt
deV

dt
d

Φ++Φ−Φ+













 ++ρΦ−















 ++ρΦ=














 ++ρ=ρ

 (1.15b) 

 
where We is the external work done on the system per time unit with the exception of the 
pressure work. It will be clear that the quantity  on the left of equations (1.15a) and 
(1.15b) represents the mean value of the system volume V. The first two terms on the right 
of this equation represent the in and outgoing convective transport of total energy, 
respectively. 
  

eρ
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1.4 Rate of molecular transport processes 
 

In paragraph 1.2. it has already been indicated that, apart from the convective transport of 
mass, momentum and (thermal) energy (heat), we can also differentiate molecular 
transport of these quantities. The Brown movement of molecules is primarily responsible 
for this type of transport and is therefore called molecular transport. Molecular transport 
can be differentiated into diffusion (mass transport), internal friction (momentum 
transport) and conduction (heat transport), which are respectively caused by concentration 
or density gradients, velocity gradients and temperature gradients1). Often both convective 
and molecular transport occurs simultaneously. For pipe surfaces, however, convective 
transport is generally more dominant than molecular transport. Molecular transport 
becomes important in non-streamed through media, in the direct environment of non-
streamed through borders (walls) of a system or perpendicular to the main streaming 
direction of the medium. Subsequently, molecular mass transport (diffusion), molecular 
heat transport (conduction) and molecular momentum transport (internal friction) will be 
looked at more closely. 

 
Molecular transport of mass (diffusion). 
Consider a long tube containing a non-streaming fluid with a dissolved substance i. The 
concentration of i is high at the beginning of the tube and low at the end of the tube. If one 
waits long enough, this initial differences in concentration in the axial or x direction will 
disappear as a result of diffusion, even when there in total absence of streaming in the fluid. 
Molecular transport of material is described by Fick’s law that states that the flow of 

material per unit area or mole flux2) of a component i, "
i,moleΦ  (kmole/(m2.s)) in the x 

direction is given by (see Fig. 1.4):  
dx
dcD i

i
"

i,mole −=Φ    (1.16) 

 

where ci is the concentration of component i (kmole/m3) and Di is the diffusion coefficient 
of component i in the considered medium (m2/s). The mole flux of component i is 
proportional to the concentration gradient of component i, which is the driving force for 
molecular transport of material. 

 
 

 
Fig. 1.4.  Illustration of Fick’s law. Molecular 
transport of component i occurs as a result of 
a concentration gradient in the x direction. 
  

 
1) A gradient represents the change of a quantity (e.g. temperature) per unit length. 
2) The concept “flux” refers to a quantity (e.g. material, momentum or heat) that is transported per time 
unit per surface unit. Here the meant surface is perpendicular to the direction of transport. 

 

x 0 x 

c i 

0 0 
" 

, x 
i 

i x i mole | 
dx 

dc D | − = Φ 
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If concentration gradients exist in the x, y and z directions, molecular transport occurs in all 
three co-ordination directions. Equation (1.16) then becomes the following vector equation 
for the mole flux: 

  iiii
iii

i
"

i,mole cDcgradD
z
c,

y
c,

x
cD ∇−=−=








∂
∂

∂
∂

∂
∂

−=Φ   (1.17a) 

 
Here grad or ∇  is the gradient operator that is defined as follows in Cartesian co-ordinates:

 
zyx

grad zyx ∂
∂

δ+
∂
∂

δ+
∂
∂

δ=∇=       (1.17b) 

where zyx and,, δδδ  are the unit vectors in the x, y and z directions, respectively. 

 
Molecular heat transport (conduction) 
Consider a long metal rod that is perfectly isolated on the mantel side (outside). One end 
of the rod is submerged in boiling water, while the other end is subjected to the 
atmosphere. If one would wait long enough, the initial temperature differences in the axial 
or x direction will be completely disappear as a result of conduction and the temperature 
at the end of the rod will be equal to the temperature at the beginning of the rod. Heat 
exchange between the end of the rod and the atmosphere is neglected here. Molecular 
heat transport is described by the law of Fourier, which states that the heat flow per unit 
area or heat flux "

hΦ  (W/m2) in the x direction is given by (see Fig. 1.5): 
 

  
x
T

h ∂
∂

−=Φ λ"         (1.18) 
 

where T is the temperature (K) and λ is the heat conduction coefficient of the medium 
(W/(m.K)). The heat flux is proportional to the temperature gradient, which is the driving 
force for molecular heat transport. If temperature gradients are present in the x, y and z 
directions, molecular heat transport occurs in all three co-ordination directions. Equation 
(1.18) then becomes the following vector equation for heat flux: 

  TTgrad
z
T,

y
T,

x
T"

h ∇λ−=λ−=







∂
∂

∂
∂

∂
∂

λ−=Φ    (1.19) 

x
0

x

T

00

"
xxh |

dx
dT

| λ−=Φ

 
 



PHYSICAL TRANSPORT PHENOMENA 

11 

Fig. 1.5. Illustration of Fourier’s law.  Molecular heat transport occurs as a result of a 
temperature gradient in the x direction. 
 
Fick’s law and Fourier’s law are practically analogous, which is even more clear if the last 
equation is rewritten in the following form, which is valid for constant density ρ and 
constant heat capacity Cp: 
 

  ( )TC
dx
da p

"
h ρ−=Φ        (1.20) 

 
where a is the thermal diffusivity, which has the same unit than the diffusion coefficient Di 
(m2/s), and is defined as follows: 

  
pC

a
ρ
λ

=         (1.21) 

The quantity ρCpT represents the heat content per volume unit (“heat concentration” in 
J/m3), which is analogous to the quantity ci, the quantity of i (expressed in kmole) per 
volume unit. 
 
Molecular momentum transport (internal friction) 
The description of molecular momentum transport is essentially analogous to the 
description of molecular and heat transport. The analogy is, however, not complete as 
momentum is a vector quantity; along with size, direction is also of importance. 
Furthermore, two complimentary viewpoints exist for the interpretation of molecular 
momentum transport that respectively connects to the field of physical transport 
properties and the field of mechanics.  
 
Molecular momentum transport will be treated here by means of a steady-state one-
dimensional stream. Consider therefore the streaming of a fluid in the positive x direction, 
where a velocity gradient is present in the y direction (see Fig. 1.6). We naturally have 
convective momentum transport in the x direction in this situation. However, we accept 
that vx is an exclusive function of the y co-ordinate, so that there is no x dependency. 
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•

•

y

vx

"
, yxiΦ

sryx →,τ

rsyx →,τ

 
Fig. 1.6.  Molecular momentum transport in a streaming fluid. Streaming is stationary and  

    occurs only in the positive x direction. The subscript “s” means “slow” and ”r”  
    means “rapid”. 

 
In this situation, layers of fluid slide over one another, which will result in internal friction 
as a result of molecular interactions (Van der Waal’s forces and polar forces). Apart from 
that, molecules can also exchange momentum through collisions, which is of dominant 
importance for gases. The fluid layers exert forces on another in the x direction, which 
implies x momentum exchange between layers, i.e. molecular transport of x momentum in 
the y direction and therefore perpendicular to the stream direction. Fluid layers with a high 
velocity (high momentum concentration) will yield momentum to fluid layers with low 
velocity (low momentum concentration). 
 
The shaded fluid layer will get momentum from the more rapid upper layer on the one 
hand, but will also give momentum to the slower flowing bottom layer. In the above figure, 

rs,yxsr,yx and →→ ττ  represent forces per surface unit (respectively working in the positive 

and negative directions), that are respectively exerted by the more rapid upper layer and 
the slower bottom layer on the shaded layer. Because steady state streaming is mentioned 
here, there is no net momentum accumulation by these or any other fluid layers because 
no acceleration or deceleration can occur, and therefore it must be that rs,yxsr,yx →→ τ−=τ . 

 
Molecular momentum transport is described by the law of Newton, which states that the 

momentum flux "
, yxiΦ  (Pa=N/m2) in the y direction is given by (see Fig 1.7): 

 

  
dy
dvx

yxi η−=Φ"
,        (1.22) 

 
where η is the dynamic viscosity (kg/m.s) of the fluid. The momentum flux is proportional 
to the velocity gradient, which is the driving force for molecular momentum transport. The 
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first subscript indicates that the transport occurs in the y direction and the second subscript 
indicates that x momentum is transported. Check for yourself that for the velocity profile 
represented in Fig. 1.6, the momentum flux is indeed negative. The analogy with the other 
molecular transport processes becomes clearer when the law of Newton is rewritten in the 
following form, which is valid for constant density ρ: 
 

  ( )"
,i yx x

d v
dy

ν ρΦ = −        (1.23) 

 
where  is the kinematic viscosity, which has the same unit as the diffusion coefficient Di 
(m2/s) and is defined as follows: 
 

  
ρ
η

=v          (1.24) 

 
The kinematic viscosity  can be regarded as a diffusion coefficient for momentum. 
 
 

vx

yy0

00

"
, y

x
yyxi |

dy
dv

| η−=Φ

 
Fig. 1.7.  Molecular momentum transport (internal friction) in terms of momentum flux. 
 
Apart from the formulation in terms of the momentum flux, which links closely to the 
formulations of substance and heat transport, the formulation in terms of shear stress yxτ  

is also used. For equation (1.22) we can write in terms of shear stress1) (see fig. 1.8): 
 

  
dy
dvx

yx ητ −=         (1.25) 

 

 
1) Stress expresses the force per surface unit, therefore the dimension of a stress is the same as that of a 
pressure, i.e. Pa=N/m2 
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The shear stress yxτ  lies on the level where y = constant and points in the x direction and is 

defined as follows: yxτ  on y=y0 is the force per surface unit that the fluid with y values 

smaller than y0 exerts on the fluid with y values larger than y0. Check for yourself that the 
shear stress yxτ  on y=y0 for the velocity profile represented in Fig. 1.8 is indeed positive.  

 
Transport coefficients 
The laws of Fick, Fourier and Newton can be seen as the definition equations of the 
transport coefficients (Di, a, λ, v and η). These quantities are dependent on the pressure 
and temperature in principal, but practically independent of the gradient of the quantity 
that is the driving force for the transport. For making estimates it is important to have an 
impression of the order of Di, λ, and η in gases, liquids and solids. 
 
 

vx

yy0

0yyxτ
00 y

x
yyx dy

dvητ −=

 
Fig. 1.8. Molecular momentum transport (internal friction) in terms of shear stress. 
 
Gases: 
At normal pressure and temperature, Di, a and  for gases are in the order of 0.5.10-5 to 
2.10-5 m2/s. That these transport coefficients are of the same order for gases has to do with 
the fact that material, heat and momentum are “bodily” transported, i.e. as a result of their 
own movement. According to the kinetic gas theory1) the following is respectively valid for 
the dynamic viscosity η and the heat conduction coefficient λ: 
 

  2233
2

d
mkT

π
η =        (1.26) 

and 
 

2

3

23

1
d

mTk
π

λ =        (1.27) 

 

 
1) Equation 1.27 is strictly speaking valid for a single atom gas. 
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where m represents the mass of the molecule, k the constant of Boltzmann and d the 
collision diameter, which should be determined by means of an experimentally known value 
of η or λ. Note that this theory predicts that η and λ increase with the root from the 
absolute temperature T, and that both quantities are independent of pressure, which 
corresponds with experimental data for pressures to about 10 atm. A more refined kinetic 
theory has been developed by Chapman and Enskog1). 
 
The kinetic theories for the prediction of transport coefficients in liquids are far less 
developed than those for gases, with the result that knowledge about these quantities is 
mainly empirical in nature. For diffusion coefficients in liquids at room temperature, one 
finds values in the order of 10-8 to 10-9 m2/s. For liquids one often uses the equation of 
Einstein-Nernst-Eyring, which gives a relation between the diffusion coefficient of a specific 
component i in a solvent Di, the dynamic viscosity of the solvent η and the absolute 
temperature T: 
 

  =
T

Diη constant       (1.28) 

 
The dynamic viscosity of liquids is strongly variable: η=0.001 kg/(m.s) for water and η=1.5 
kg/(m.s) for glycerine (both at 20°C). The viscosity of a liquid is generally strongly 
temperature dependent: 
 

  ( ) ( ) 















−=

0
0

11exp
TTR

E
TT aηη      (1.29) 

 
where T is the absolute temperature, T0 is a reference temperature (in K), Ea is the 
“activation energy” (in J/mole) and R the gas constant. Note that the viscosity of liquids, in 
contrast to that of gases, decreases with increasing temperature. This fact means that the 
mechanism for momentum transport in liquids differs fundamentally from that in gases. 
The heat conduction coefficient λ of most liquids lies between 0.1 W/(m.K) (organic 
compounds) and 0.6 W/(m.K) (water). 
 
Solids: 
The diffusion coefficients in solids are relatively small in relation to that in liquids and gases, 
due to the bad mobility: 10-11 to 10-13 m2/s. For the heat conduction coefficient, one should 
differentiate between amorphic substances, crystalline substances and metals. λ is about 1 
W/(m.K) for amorphic substances, somewhat higher for crystalline substances, while it is 

 
1) For a comprehensive description of this theory, see the book “Molecular Theory of Gases and Liquids” by 
J.O. Hirschfelder, C.F. Curtiss and R.B. Bird. 

 



Chapter 1  TRANSPORT PHENOMENA 

16 

highest for metals due to the (considerable) heat transport by free electrons: λ varies 
between 10 and 500 W/(m.K) for metals. According to the law of Wiedemann, Franz and 
Lorenz, a relation exists between the heat conduction coefficient λ and the electrical 
conduction coefficient λe for metals: 
 

  L
Te

=
λ
λ         (1.30) 

 
with L the Lorenz number. The Lorenz number L varies for pure metals from about 22 to 
29.10-9 Volt2/K2 and is practically independent of the temperature. This equation is not 
suitable for non-metals, because then the transport processes of heat and electric charge 
are not dominated by the free electrons any more.  
 
Under normal conditions, no flow occurs in solids, so that the concept of viscosity is not 
looked at for the study of the deformation of solids. The study of the deformation of solids 
and the connected phenomena belong to the field of mechanics, and will not receive any 
further attention here.  
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2. MICROSCOPIC MASS BALANCE  

 
In the previous chapter, we have encountered the macroscopic balances.  In this chapter, a 
microscopic balance will come up for discussion, specifically the microscopic mass balance, 
also called the continuity equation.  As mentioned before, a microscopic balance gives 
information on the microscopic system characteristics such as the distribution of a quantity 
(e.g. mass) over a specific chosen volume.  

 
We start with a system where flow of a compressible medium, i.e. a medium of which the 
density is not constant, occurs is all three co-ordination directions (x, y and z direction).  The 
three components of the flow velocity, vx, vy and vz, are position dependent, i.e. a function 
of x, y and z, and furthermore time dependent. For the derivation of the continuity 
equation, we consider a non-moving, differential1) volume element in the flowing medium, 
where the measurements of the element amount to dx, dy and dz in the x, y and z 
directions, respectively (see fig. 2.1). 

 
 
 Fig. 2.1.  A non-moving, differential volume element with volume dV=dxdydz, with 
flow of a compressible medium in the three co-ordination directions x, y and z.  

 
The law for the conservation of mass for a volume element dV=dxdydz reads in words: 
 
the increase of mass in dV=dxdydz per time unit = net inflow of mass per time unit in the 
x direction + net inflow of mass per time unit in the y direction + net inflow of mass per 
time unit in the z direction + production of mass per time unit in dV=dxdydz 

 
1) By a differential element is meant that the measurements dx, dy en dz are chosen infinite (arbitrary) 
small. This choice is essential as the system quantities (density and velocity components) vary 
continuously (gradually) with the position. 

z

y

x
dy

dx

dz

yy |v dyyy |v +
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Inflow of mass in the y direction per time unit through surface dxdz (kg/s): 
 

   
 

Outflow of mass in the y direction per time unit through surface dxdz (kg/s): 
 

   
 

Net inflow of mass in the y direction per time unit (kg/s): 
 

 

        (2.1) 

 

Inflow of mass in the x direction per time unit through surface dydz (kg.s): 
 

   
 

Outflow of mass in the x direction per time unit through surface dydz (kg/s): 
 

   
 

Net inflow of mass in the x direction per time unit (kg/s): 
 

   

        (2.2) 

 

Inflow of mass in the z direction per time unit through surface dxdy (kg.s): 
 

   
 

Outflow of mass in the z direction per time unit through surface dxdy (kg/s): 
 

   

 
Net inflow of mass in the x direction per time unit (kg/s): 
 

   

        (2.3) 
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The increase in mass per time unit in the considered differential volume element 
dV=dxdydz amounts to (kg/s): 
 

      (2.4) 

 
As we are formulating the law for the conservation of (total) mass, the mass produced per 
time unit in dV is zero1).  Filling in of the equations (2.1), (2.2), (2.3) and (2.4) into the law 
of conservation of mass that is formulated in words, gives, after division by dV=dxdydz, the 
microscopic mass balance, or continuity equation: 
 

   (2.5) 

 

The physical interpretation of the above equation is as follows: on the left stands the 
accumulation of mass per volume unit, while the net inflow of mass per volume unit and 
per time unit stands on the right.  In equation (2.5), div or ∇ is the divergence operator.  
With the notation , it is shown that the internal product between the vector 

differential operator ∇ and the vector  has to be formed, with a scalar quantity as the 
result: 
 

   

       (2.6) 

 

If density is constant, which is a good approximation for liquids under normal conditions, 
then the continuity equation is reduced to: 
 

     (2.7) 

 
The quantity  can (analogous to the term ) be taken as the net inflow of 
volume per volume unit and per time unit, or the relative change in volume per time unit. 
In many books on physical transport phenomena, one finds an alternative form of the 
continuity equation, where the concept “derivative following the motion” is used.  As this 
concept is also of importance for the formulation of the microscopic momentum balances, 
it will be introduced here by means of a simple example. The continuity equation will then 
be newly formulated with the help of this concept.  Consider therefore a river in which the 

 
1) If chemical reactions occur in the medium, the total (net) mass production is also zero according to the 
law of Lavoisier. 
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concentration of fish is c, where c represents the number of fish per volume unit.  As the 
fish are moving, c will be a function of the position, i.e. the x, y and z co-ordinates, and the 
time t. We are interested in the change in concentration per time unit ct that is registered 
by three observers A, B and C. Observer A is is in rest on the riverbank, observer B moves 
in a rowing boat at velocity , while observer C is in a boat that floats with the stream and 
thus has the same velocity as the stream. 
 
Observer A is in a stationary position and will therefore register a concentration change per 
time unit that corresponds with the partial derivative of c according to time ∂c/∂t, 
therefore: 
 

          (2.8) 

 

The position of observer B (x, y and z co-ordinates) is a function of time, and therefore the 
registered concentration change in this case will be caused by the concentration change in 
the time t that is registered on a stationary position on the one hand, and on the other hand 
by the concentration change registered as a result of the movement of observer B.  
Observer B will register a change in concentration that corresponds to the total derivative 
of c according to time dc/dt, thus: 
 

   

        (2.9) 

 

where ux, uy and uz are the respective x, y and z components of the velocity  with which 
the observer moves in the rowing boat. 
 
As observer C moves with the (momentary and local) water velocity , we can replace the 
ux, uy and uz of (2.9) by vx, vy and vz, respectively.  Observer C will register a change in 
concentration that (per definition) corresponds to the substantial derivative of c according 
to time Dc/Dt, thus: 
 
 

   

        (2.10) 

 
For the substantial derivative of the density ρ according to time, it is valid according to 
equation (2.10) that: 
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     (2.11) 

 
while according to the continuity equation (2.5) it is valid that: 
 

   (2.12) 

 
which, with the help of equation (2.11), can be written as: 
 

        (2.13) 

 
For an incompressible medium, the second term on the left in (2.13) is zero (on the grounds 
of (2.7)), so that the continuity equation reduces to: 
 
 

         (2.14) 
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3 MICROSCOPIC MOMENTUM BALANCE 

 
In this chapter, attention will be focused on the analysis of a number of flow problems on 
the one hand, and on the other on the derivation of the microscopic momentum balance, 
or the Navier-Stokes equations. The Navier-Stokes equations are of extreme importance in 
both theoretical and practical flow studies as all laminar1) single-phase flows can be 
described by these equations. These equations are, however, very complicated and only in 
relatively simple cases analytical (approximate) solutions can be reached. Quantitative 
analysis of complex flow phenomena recently became possible through the development 
of efficient numerical techniques on the one hand, and on the other through the availability 
of fast computers. In this context, the development of this “young” field can be called 
“computational fluid dynamics (CFD)”, a field that concentrates on the development and 
application of numerical techniques for the solution of the Navier-Stokes equations. 
 

3.1 Simple flow problems 

With “simple flow problems” is meant that all considered flows comply with the following 
characteristics: 
- flow is in steady-state and laminar 
- flow only occurs in one direction 
- the medium acts as a Newtonian fluid2) and is not compressible. 
 
In all cases, we are interested in the spatial distribution of the velocity component (in the 
main flow direction) within a considered system volume so that a microscopic momentum 
balance (momentum balance for a differential volume element dV) can be formulated each 
time. The method handled in the following examples is not suitable for curved streamlines. 
For the analysis of these systems, one should use the (general) Navier-Stokes equations for 
the relevant co-ordination system.  
Considering the velocity distribution it can be noted that one is often not interested in the 
distribution itself, but more in the quantities such as the maximum velocity, the average 
velocity and the shear stress on the system walls that can be derived from it. 
 
The law for the conservation of momentum can be formulated as follows for a differential 
volume element dV: 
 
the increase of momentum in dV per time unit = ingoing momentum quantity per time 

unit – outgoing momentum quantity per time unit + sum of the forces acting on dV 
 

1) Flows can be divided into laminar and turbulent flow. In a liquid with laminar (layered) flow, the stream 
lines (layers of fluid particles) do not cross each other, while it happens continuously in a turbulent (with 
whirls) flowing fluid. 
2) This means that the relationship between the momentum flux or shear stress and the velocity gradient 
is given according to the law of Newton (see paragraph 1.3). 
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The calculation of this balance formulation results in a differential equation for the velocity 
component in the main direction. Integration of this equation gives, after application of the 
boundary conditions, the expression for the velocity profile. Considering the formulation of 
these boundary conditions, one distinguishes between types of boundary layers (G = gas, L 
= liquid, S = solid3)): 
 
L – S boundary layer or G – S boundary layer: For this type of boundary layer it is valid that 
the fluid velocity is equal to the velocity with which the solid wall moves. This type of 
boundary condition is called the “no-slip” boundary condition. On non-moving solid walls, 
the fluid velocity is therefore equal to zero.  
 
L – G boundary layer: On this type of boundary layer the momentum flux (and thus the 
velocity gradient) in the fluid is very small and can be considered to be zero for practical 
calculations. This type of boundary condition is called the “free-slip” boundary condition. 
 
L – L boundary layer1): On this type of boundary layer, both the momentum flux 
perpendicular to the boundary layer and the velocity are continuous, i.e. these quantities 
have the same value on both sides of the boundary layer.  
 
We describe the molecular momentum transport in terms of a momentum flux for which 
we will, according to the convention in the literature, in future use the symbol τ. 
 
 

3.1.1 Steady-state flow between plates 

 
An incompressible Newtonian fluid flows in the steady-state, under the influence of an 
applied pressure gradient, laminar between two endlessly stretched out, flat plates (see Fig. 
3.1). For the analysis of the flow between the flat plates, the axis system is chosen centrally 
between the plates where the positive x-co-ordinate is in the flow direction of the liquid. 
Furthermore, a differential volume element dV = bdxdy is taken as starting point2) for the 
formulation of the x-momentum balance, where b is the width of the plates perpendicular 
to the xy-plane. The different transport terms of the x-momentum are given in Fig. 3.1. 
 
  
  

 
3) Under “solid” a solid system wall such as the (inside) wall of a pipe is also understood. 
1) It is assumed that the two liquids that are in contact with one another are immiscible. 
2) The measurements in the volume element in both the x-direction and y-direction are chosen infinite 
small because vx can essentially vary continuously with both co-ordinates. 
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Fig. 3.1.  Flow between two endlessly outstretched flat plates. In this figure the 
different transport terms from the x-momentum balance are given. 
 
 
In this situation, convective transport of x-momentum occurs in the x-direction, and 
molecular transport of x-momentum occurs in the y-direction, thus perpendicular to the 
flow direction. A velocity gradient3), which is the driving force for the molecular transport, 
is present in the y-direction. In this case, apart from the transport terms, we also have to 
do with the net pressure forces that are exerted on the control volume: the pressure force 
p.bdyIx exerts on the “left side” of the control volume in the positive x-direction, while the 
pressure force p.bdyIx+dx is exerted on the “right side” of the control volume in the negative 
x-direction. The microscopic balance for x-momentum reads as follows: 
 

    (3.1) 

 
In the steady-state situation, there is no accumulation of x-momentum in the considered 
control volume, and therefore the left hand side of (3.1) is zero. The first two terms in the 
right hand side of (3.1) represent the in and outgoing convective x-momentum transport 
respectively. The following two give the respective in and outgoing molecular x-momentum 
transport, while the last two terms represent the net pressure force that acts on the control 
volume (check for yourself that all terms in (3.1) have the dimension of a force). The 
convective transport terms are formulated as the product of x-momentum per volume unit 
ρvx(N.s/m3) and a volume stream vxbdy(m3/s). The molecular transport terms are 

 
3) On the walls (y=±d/2), vx will have a value of zero because of the ‘no-slip” condition, while vx will 
have a certain (positive) value elsewhere. 
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formulated as the product of an x-momentum flux in the y direction (quantity of x-
momentum per surface unit transported per time unit in the y 
direction)τyx((N.s)/m2.s)=N/m2=Pa) and the size of the surface bdx through which transport 
is realised. 
 
Concerning the signs in (3.1) the following should be noted. An ingoing momentum stream 
showing in the positive axis direction is positive, while an ingoing momentum stream is 
negative if it is showing in the negative axis direction. An outgoing momentum stream 
showing in the positive axis direction is negative, while an outgoing momentum stream is 
positive if it shows in the negative axis direction. These rules are summarised again in the 
following table 3.1. 
 
 
  Table 3.1. The sign of the momentum stream in different situations. 
 

Momentum 
stream 

Showing in positive 
axis direction 

Showing in negative 
axis direction 

Ingoing 
momentum 
stream 

positive negative 

Outgoing 
momentum 
stream 

negative positive 

 
 
Equation (3.1) is divided by dV=bdxdy, and consequently the limit1) dx→0 and dy→0 is taken 
so that it results in the following equation: 
 

        (3.2) 

 

On the grounds of the continuity equation, the first term in the right member of (3.2) is zero 
for an incompressible medium. If, apart from that, it is assumed that the pressure gradient 

 is independent of y, then the following simple first order differential equation 
follows (Check this yourself!): 
 

          (3.3) 

 

which, with the boundary condition τyx=0 for y=0, can be integrated to: 
 

 
1) As an alternative, a truncated Taylor series can be used, as done for the deduction of the continuity 
equation. 
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        (3.4) 

 

whereby the (Newtonian) relationship between the momentum flux and the velocity 
gradient is also substituted at the same time. Note that the momentum flux τyx varies linear 
to the y-co-ordinate. Because the pressure gradient dp/dx is negative, the momentum flux 
is positive for y>0 and negative for y<0. The boundary condition that is applied for the 
integration of (3.3) implicates that the velocity profile is symmetrical with regard to the line 
y=0, which corresponds to our physical intuition. Integration of (3.4) with the boundary 
condition vx=0 for y=-d/2 or y=+d/2 (“no-slip” boundary condition) gives the following 
expression for the velocity profile: 
 

        (3.5) 

 

The streaming fluid evidently has a parabolic velocity profile with a maximum for y=0: 
 

         (3.6) 

 

The average velocity <vx> follows from: 

      (3.7) 

The profile of the momentum flux τyx and  velocity vx is represented qualitatively in Fig. 3.2. 
 

 
 Fig. 3.2.  Qualitative profile of the momentum flux τyx and the velocity vx 
                           for flow between two flat plates. 
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3.1.2 Steady-state flow through a round tube 

 
We will now consider the steady-state flow of an incompressible Newtonian fluid that 
streams through a round tube under influence of an applied pressure gradient (see Fig. 3.3). 
For the analysis of this tube flow, we use cylindrical co-ordinates, whereby we assume at 
the same time that flow is rotation symmetric. The positive z-co-ordinate shows in the flow 
direction of the fluid. In this case a cylindrical shell with the volume dV=2πrdrdz is taken as 
starting point for the formulation of the differential z-momentum balance. The different 
transport terms of z-momentum are given in Fig. 3.3. 

 
 

 
 
Fig. 3.3  Flow through a round tube. The different transport terms from the z-momentum balance 
are given in this figure. 

 
Analogous to the situation for flat plates, convective transport of z-momentum occurs in 
the z-direction and molecular transport of z-momentum occurs in the r-direction, thus 
perpendicular to the flow direction. Apart from the transport terms, we again have to do 
with net pressure forces that are exerted on the control volume. The pressure force 
p.2πrdr|z is exerted on the dark shaded “left side” of the cylindrical shell in the positive z-
direction, while the pressure force p.2πrdr|z+dz is exerted in a negative direction on the light 
shaded “right side” of the cylindrical shell. The microscopic balance for z-momentum reads 
as follows: 
 

    (3.8) 
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In the steady-state situation, there is no accumulation of z-momentum in the control 
volume and therefore the left hand side of (3.8) equals zero. The terms in this equation can 
be interpreted in an analogous way to those in the x-momentum balance for the flat plates. 
Equation (3.8) is divided by dV=2πrdrdz, and subsequently the limit dr→0 and dz→0 is 
taken, resulting in the following equation: 
 

       (3.9) 

 
Note that (3.9) is very similar to (3.2), the only principal difference being in the last term, 
which represents the net increase of z-momentum per unit of volume and time as a result 
of molecular z-momentum transport. The presence of the so-called scale factor r in this 
term takes into account the effect of the with radial co-ordinate increasing surface through 
which the molecular transport is realised.  
 
For an incompressible medium on the other hand, the first term in the right member of 
(3.9) equals zero, on the grounds of the continuity equation. If it is also assumed that the 
pressure gradient ∂p/∂z is independent of r, the following simple first order differential 
equation follows (check this for yourself!): 
 

         (3.10) 

 
which can be integrated to: 
 

       (3.11) 

 
In equation (3.11), C is the integration constant and the Newtonian relation between the 
momentum flux and the velocity gradient is completed. Because τrz is limited for all r-values, 
C=0 has to be chosen. From equation (3.11) we can then read that the momentum flux 
varies linear to r and is a maximum for r=R, i.e. on the tube wall. Integration of equation 
(3.11) with the “no-slip” boundary condition vz=0 for r=R (R is the radius of the tube), gives 
the following expression for the velocity profile: 
 

        (3.12) 

 
The streaming medium evidently also shows a parabolic velocity profile in this case, with a 
maximum for r=0: 
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        (3.13) 

 

The average velocity follows from: 
 

     (3.14) 

 

Thus <vz>/(vz)max is smaller for the tubular pipe than for the corresponding quotient for the 
flat plates. Although both geometry’s show a parabolic velocity profile, the relatively slow 
flowing fluid layer near the tube wall weighs heavier in the calculation of the average 
velocity because (for constant “layer thickness” dr), there the surface (2πrdr) is larger. For 
constant axial pressure gradient dp/dz it is valid that dp/dz=(p0-pL)/(0-L)=-(p0-pL)/L, where 
p0 and pL are the respective pressures at the beginning and end of the tube, and L is the 
tube length. For the volume stream Φv, it is valid in this situation: 
 

       (3.15) 

 

This relation is known as the law of Hagen-Poiseuille and gives the relation between the 
volume stream through the tube Φv and the pressure drop (p0-pL) applied over the tube, 
which is the driving force for flow. The profile of the momentum flux τrz and the velocity vz 
is qualitatively represented in Fig. 3.4. 
 

 
 
 Fig. 3.4.  Qualitative profile of the momentum flux τrz and the velocity vz 
for flow through a round tube. 
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For the z-component of the (viscous) force that the fluid exerts on the tube wall, it is valid 
that: 
 

      (3.16) 

 
From the above equation it seems that the viscous force Fz is proportional to the product 
η<vz>L. When we look at the law of Stokes, which gives an expression for the friction force 
exerted for flow around a sphere in the regime of creeping flow1), we will again encounter 
this characteristic form2). 
 
 

3.1.3 Steady-state flow through an annulus 

 
In a number of situations there is no known boundary condition for momentum flux, but 
only boundary conditions for velocity are available. As an example of such a system we will 
consider the steady-state flow of an incompressible Newtonian fluid that flows through the 
annular space between two concentric cylinders under the influence of an applied pressure 
gradient (see Fig. 3.5). The radius of the inner cylinder amounts to ‘a’ and that of the outer 
cylinder to ‘b'. The choice of the co-ordination system is identical to that of the previous 
example. 

 

 
 

 
1) In the regime of creeping flow, the streamlines completely adapt to the form of the sphere. 
2) By characteristic form is meant the product of dynamic viscosity, characteristic velocity and 
characteristic dimension. 
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Fig. 3.5.  Flow through an annular space between two concentric cylinders with radius  

  a (inner cylinder) and b (outer cylinder). 

 
For the analysis of this flow problem, we use equation (3.11) as starting point, where C is 
replaced by C1. Because this equation is valid here for a≤r≤b, the boundary condition for 
r=0 used in the previous example (that τrz is limited for all r-values, thus also for r=0) can of 
coarse not be used here.  
 

       (3.17) 

 

Integration of (3.17) gives: 
 

       (3.18) 

 

Here we thus have two integration constants C1 and C2 that could be determined by means 
of the two known boundary conditions for the velocity on r=a and r=b. After application of 
these boundary conditions, the following two equations for the two unknowns C1 and C2 
result: 
 

       (3.19a) 

 

       (3.19b) 

 
Solution of the system (3.19) and filling C1 and C2 in (3.18) gives the following expression 
for the velocity profile in the annular space (for constant axial pressure gradient): 

     (3.20) 

 

For the average velocity <vz>, the following definition equation is valid: 
 

       (3.21) 
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which gives the following expression for <vz> after solution: 
 

     (3.22) 

 
We can subsequently also determine the expression for momentum flux τrz with the law of 
Newton: 

      (3.23) 

 
In contrast with the previous two examples, the result is dependent on the (assumed) 
relation between the momentum flux (shear stress) and the velocity gradient. For the z-
component of the (viscous) force that the flowing fluid exerts on the walls of the annular 
space, it is valid that: 
 

    (3.24) 
 

Check that τrz=0 and vz=(vz)max for r=rmax, where it is valid for rmax: 
 

         (3.25) 

 

Corresponding to our expectations, the equations for the streamed through annular space 
go over into those for the round tubular conduit for a→0, while for a>>(b-a), these 
equations reduce to the equations that are valid for flow between flat plates (check this for 
yourself!). 
 

3.2 Navier-Stokes equations 

 
In the previous paragraph we have formulated and calculated the microscopic momentum 
balances for a number of relatively simple flow problems. It is, however, not necessary that 
we follow this procedure every time for the analysis of a new flow problem. As an 
alternative we can also start from the general microscopic balances for mass and 
momentum that we will subsequently simplify in a “suitable way”. We automatically get a 
list of assumptions, which we have made during the simplification, as by-product of this 
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procedure. Besides, it is safer to go out from the general microscopic balances in the 
relevant co-ordinate systems for the analysis of complex flow problems (two and three 
dimensional flows with curved streamlines). These general microscopic balances for 
momentum are known as Navier-Stokes1) equations. The derivation of the Navier-Stokes 
equations can essentially be done analogous to the derivation of the continuity equation 
by setting up microscopic balances for x-momentum, y-momentum and z-momentum. In 
this introductory subject, however, the derivation will be left out and these equations will 
be postulated. Those who are interested are referred to more detailed courses in the field 
of “advanced physical transport phenomena”. 
 
For constant density and constant dynamic viscosity, the Navier-Stokes equations read as 
follows in vector notation1): 
 

     (3.26) 

 
where  is the following differential operator: 
 

        (3.27) 

 

while  is the Laplace operator of which the Cartesian co-ordinates are given by: 
 

        (3.28) 

 

For frictionless media (η=0) there is no viscous momentum transport and the law of Euler2) 
is valid: 
 

      (3.29) 

 
This equation is often used to describe flowing gases as gases generally have a low 
(dynamic) viscosity (for air at atmospheric conditions, η=2.10-5 kg/(m.s)). 
 
All terms in equation (3.26) have the dimension of a force per volume unit (N/m3). In fact, 
the Navier-Stokes equations represent the second law of Newton (mass x acceleration = 
sum of forces) that is applied here to an infinitesimally small volume element that moves 

 
1) This method of notation is only valid for Cartesian co-ordinates. 

 
 
2) These equations were first deducted by Euler in 1755. 
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everywhere with the flowing medium. In the left hand side of (3.26) stands the momentum 
change per volume unit of the element, while in the right hand side stands the sum of the 
forces exerted on the element (per volume unit). In the following table the Navier-Stokes 
equations (for constant ρ and η) are given in Cartesian co-ordinates. We will use these 
equations in the following paragraph as starting point for the analysis of a simple flow 
problem. 
 
 
 
Table 1:  Navier-Stokes equations (constant ρ and η) in Cartesian co-ordinates. 
 
 
x-component: 
 

 

 
y-component: 
 

 

 
z-component: 
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3.3 Working with the Navier-Stokes equations 

 
As already stated in the introduction, all laminar single-phase flows can essentially be 
described by the Navier-Stokes equations. As an example, a simple laminar flow problem 
will be analysed on the basis of these equations. 
 
Flow along a vertically positioned wall. 
 
As an example we consider the steady-state flow of an incompressible Newtonian fluid 
(with dynamic viscosity η) along a vertically wall. In and outflowing effects can be ignored. 
An expression for the velocity profile vx(y) is asked. 

 
 
 Fig. 3.6. Flow of a fluid along a vertically set up wall. 
 
 
This problem can be described in Cartesian co-ordinates and as flow occurs in the x-
direction, the microscopic balance for x-momentum is chosen as starting point. There is 
steady-state flow (∂vx/∂t=0) and flow only occurs in the x-direction (vy=0 and vz=0) whereby, 
on the grounds of the continuity equation, vx (for constant y) is independent of x (∂vx/∂x=0). 
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The left hand side of the microscopic balance for x-momentum is therefore equal to zero. 
There is no pressure gradient in the x-direction so that: ∂p/∂x=0. Molecular momentum 
transport occurs in the y-direction as vx is dependent on y (but independent of x and z so 
that: ∂2vx/∂x2=0 and ∂2vx/∂z2=0). Gravity acts in the positive x-direction so that gx=g, with g 
the gravity constant. The (general) microscopic balance for x-momentum thus reduces to: 

          (3.30) 

 

The following two boundary conditions are valid for (3.30): 
 

  vx=0    for y=δ       and           for y=0   (3.31) 

 

Integration of (3.30) with the boundary conditions (3.31) results in the following expression 
for the velocity profile (check this for yourself): 

         (3.32) 

 

Note that the fluid falls with a “half parabolic” velocity profile along the vertical wall and 
that the maximum velocity (vx)max is reached for y=0, i.e. at the fluid-air boundary layer. 
From (3.32) it can be read that it is valid for (vx)max that: 
 

          (3.33) 

 

For the average velocity <vx>, it is simple to derive that this amounts to 2/3 of the maximum 
velocity (vx)max (check this yourself). 
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4 BERNOULLI’S LAW FOR FRICTIONLESS FLOW 

 
For the description of a number of flow phenomena, additional equations to the mass and 
momentum balances are required. The mechanical energy balance, or the law of Bernoulli, 
is an often occurring and important example and will be looked at more closely in this 
chapter. The mechanical energy balance that we formulate in this chapter is valid for ideal 
fluids, i.e. for fluids without internal friction. In Chapter 6, we will encounter the extended 
law of Bernoulli, which is valid for flows with internal friction. 
 
The law of Bernoulli for frictionless flows is essentially a conservation rule for the different 
forms of mechanical energy. In a flowing fluid, pressure, kinetic energy and potential energy 
can be seen as forms of mechanical energy. For frictionless flows, these different forms of 
mechanical energy can be converted into one another; whereby it is worth noting that no 
mechanical energy can be lost hereby. For flows with internal friction, on the other hand, a 
loss1) of mechanical energy can occur. 
 

4.1 Derivation of the Law of Bernoulli 

 
For the derivation of the law of Bernoulli (for frictionless flow), the equation of Euler is 
taken as starting point: 
 

         (4.1) 

 
This equation describes the momentum change of a volume element, which moves with 
the flowing medium as a result of the forces acting on that element. On the left hand side 
of (4.1) stands the momentum change per volume unit, on the right hand side the sum of 
the forces (per volume unit) that act on the element. If (4.1) is internally multiplied2) with 
the velocity , it results in the following scalar equation, which gives the substantial 
derivative for the time of the kinetic energy per mass unit: 
 

       (4.2) 

 
If equation (4.2) is divided by the density ρ, the following equation results: 
 

 
1) In such systems a conversion of mechanical energy into internal energy occurs, which results in a 
temperature increase of the fluid. This temperature increase is important only in extreme cases. 
2) The x-, y- and z-component of (4.1) are respectively multiplied by vx, vy and vz. 
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       (4.3) 

 
The first term in the right member of (4.3) can be written as the following according to the 
definition of the substantial derivative of time (check this yourself!): 
 

       (4.4a) 

 
where p0 is an arbitrarily chosen reference pressure. In the steady state, the last term in 
(4.4a) is equal to zero, so that equation (4.4a) reduces to: 
 

        (4.4b) 

 
The gravitation force per mass unit  can be expressed as the gradient of a potential Ψ, 
which represents the potential energy1) per mass unit: . According to the 

definition of the substantial derivative for DΨ/Dt and the definition of the potential Ψ, it is 
valid that: 
 

       (4.5a) 

 
As Ψ is independent of time, it is valid that ∂Ψ/∂t=0, so that equation (4.5a) can be written 
as: 
 

         (4.5b) 

 
substitution of the simplified expressions (4.4b) and (4.5b) into the right member of 
equation (4.3) gives, after union of the terms: 
 

        (4.6) 

 

 
1) The minus sign indicates that the potential energy (per mass unit) Ψ increases in the opposite direction 
of the vector g . 
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The potential energy per mass unit ψ can be expressed as ψ=gh, where h is the height with 
regard to a specific reference level. Integration of equation (4.6) between point 1 and point 
2 gives the law of Bernoulli for a frictionless fluid: 
 

       (4.7) 

 
The above equation can also be expressed in the alternative, so-called “∆-formulation”: 
 

        (4.8) 

 
whereby ∆ is defined as: ∆ = “2” – “1”. With the integration of the differential equation 
(4.6), which is formulated in terms of a substantial differential quotient, we essentially 
follow a differential volume element along its streamline. Equation (4.8) shows that the 
sum2) of the kinetic energy, the potential energy and the pressure energy is constant. As a 
result of the flow conversion of e.g. pressure energy into potential and/or kinetic energy 
can occur. The sum of these forms of energy does, however, remain constant. If the fluid is 
incompressible, the density ρ may be removed from the integral sign in the last term of 
(4.8), so that the following results after multiplication with ρ: 
 

       (4.9) 

 
The terms in this equation have the dimension of a pressure and can be seen as forms of 
mechanical energy per volume unit. 
 
Summing up, the law of Bernoulli, equation (4.8), is valid: 
 
- along a streamline for a differential volume element, 
- for ideal, i.e. frictionless fluids, 
- for compressible fluids, 
- in cases where no work is applied to the fluid, 
- in the steady or quasi-steady state. 
 
If equation (4.9) is divided by ρg, the mechanical energy forms are expressed as a measure 
of height: 
 

 
2) All terms in the law of Bernoulli have the dimension J/kg and all represent the amount of mechanical 
energy per mass unit. 
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        (4.10) 

 
In Fig. 4.1 an illustration of the above form of the law of Bernoulli is given, where the 
physical meaning of the different terms is clarified. A frictionless fluid flows with a uniform 
velocity from a tank with a constant liquid level, through a horizontal tube. 
 
 

 
 Fig. 4.1.  Illustration of the law of Bernoulli for flow through a horizontal tube. 
 
 
At point 1, the fluid has no velocity, at points 2 and 3 the velocity is equal to each other. At 
point 1 the height (as a measure of the mechanical energy) with regard to a fictitious zero 
level consists of h (“position height”) and p/ρg (“pressure height”). At point 3, a part of the 
pressure height p/ρg is converted to “velocity height” v2/2g, whereby the pressure on point 
3 is lower than on point 1. At point 4, the fluid is slowed down by the obstacle that is 
directed to the front, whereby the velocity decreases to zero just in front of this obstacle. 
As a result of the slowing of the fluid, the “velocity height” is converted to “pressure height” 
so that the pressure at point 4 is again equal to that at point 1. 
 
The velocity of the flow in the tube can be measured by measurement of the height 
difference between points 3 and 4. The so-called Pitot tube is based on this measurement 
principle (see paragraph 4.2.). 
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The law of Bernoulli is valid for a differential volume element that moves along a streamline. 
In flows that we encounter in practice, the fluid elements follow different streamlines so 
that, strictly speaking, Bernoulli’s law is not applicable. Particularly for low flow velocities, 
v will vary over the pipe diameter so that the expression for the kinetic energy per mass 
unit ekin=v2/2 should (for constant density ρ) be replaced by: 
 

         (4.11) 

 
The slanting parentheses (<  >) indicate that the relevant quantity should be averaged over 
the pipe diameter. In these situations, the law of Bernoulli reads: 
 

       (4.12) 

 
 

4.2 Applications 

 
Although no frictionless fluids exist, internal friction play a minor role for a number of flow 
phenomena, so that the law of Bernoulli can be used for the description of these 
phenomena. The following applications for Bernoulli’s law will be treated successively: 
 
- streaming of a liquid through a hole in the bottom of a tank. 
- measurement of the velocity with a Pitot tube. 
- flow through a pipe with a sudden widening. 
 
As first application of the law of Bernoulli, we consider the flow of a liquid through a narrow 
opening in the bottom of a tank (see Fig. 4.2.). The diameter of the opening is given as Ag, 
where Ag is much smaller than the diameter of the tank Av. The fluid height in the tank is 
given as h. The point 2, situated on the centre-line through the opening, and the point 1 of 
the liquid level, situated vertically above point 2, are two points of the same streamline. 
Point 2 is chosen so that the pressure in the outflowing liquid is there equal to the pressure 
at point 1, i.e. the atmospheric pressure p0. Application of the law of Bernoulli (equation 
(4.9)) between the points 1 and 2 gives: 
 

      (4.13) 
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As p1=p2=p0 and (on the grounds of the continuity equation) v1<<v2, and it is moreover laid 
down that h2-h1=-h, equation (4.13) reduces to: 
 

          (4.14) 

 
The outflow velocity v2 is therefore proportional to the root of the fluid height. The 
outflowing volume stream Φv is the product of the outflow velocity v2 and the area of the 
opening, A. The question, however, is which area should be used, as the outflowing fluid 
stream shows a contraction. Strictly speaking, the with p0 corresponding surface A* should 
be used, but as this surface is unknown, A* is expressed by means of an empirically 
determined coefficient Cc, the so-called contraction coefficient, in the surface of the 
outflow opening Ag: 
 

          (4.15) 
 

The following (empirical) expression is then valid for the outflowing volume debit Φv: 
 

         (4.16) 

 

 
 
 Fig. 4.2.  Outflow of a liquid through a hole in the bottom of a tank. 
 
 
The time t*, which is needed for the tank to empty, can be calculated by combining the 
expression for the outflowing volume stream with the macroscopic mass balance for the 
tank: 
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      (4.17) 

 
 
As the density ρ and the diameter of the tank Av are constant, (4.17) can be written as: 
 

         (4.18) 

 
Integration of (4.18) with the starting condition t=0: h=h0, gives the following expression for 
the fluid height in the tank as function of the time: 
 
 
 

        (4.19) 

 
The expression for the time can be obtained by equalling the left member to zero: 
 

         (4.20) 

 
The most important application of Bernoulli’s law lies therein that one can derive the 
velocity of a flow by measuring pressures. As an example hereof, the measuring principle 
of the Pitot tube will be discussed more closely. A torpedo-shaped object is placed in a 
homogenous fluid flow1) with the axis of the object lying in the flow direction, while the 
round head of the object is turned towards the flow direction (see Fig. 4.3). In this situation, 
the streamlines will distribute symmetrically with regard to the centre-line AS. The velocity 
of the fluid elements will gradually decrease along the line AS and become zero at point S, 
the so-called stagnation point. Along the curved surface the velocity will gradually increase 
to a maximum value that is higher than the velocity of the undisturbed flow v, and will 
subsequently decrease again. On the curved surface, there must therefore be a point B 
somewhere where the velocity is equal to the velocity of the undisturbed flow. The 
application of Bernoulli’s law between point A (p=p1), where flow is undisturbed, and point 
S (p=p2), the stagnation point, gives: 
 

 
1) In a homogenous flow, the velocity is the same in every point as far as direction and size go. 
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         (4.21) 

 
The pressure in the stagnation point S is therefore higher than the pressure p1 in the 
undisturbed flow (the so-called static pressure) by an amount of (1/2)ρv2. This pressure that 
is built up in the stagnation point S by the kinetic energy being freed is called the stagnation 
pressure. The measuring principle of the Pitot tube follows immediately from (4.21): the 
velocity v (at known density ρ) can be determined by measuring the pressure difference p2-
p1. 
 

 
 
 
Fig. 4.3.  Flow around a torpedo-shaped object. (point A: undisturbed flow conditions,  

point B: velocity equal to that at point A, point S: stagnation point) 

 
As explanation, the measuring principle is given in more detail in the following figure (figure 
4.4). The static pressure p1 is measured in chamber K1, the static pressure p1 plus the 
stagnation pressure (1/2)pv2 are measured in chamber 2 K2. From the difference in 
pressure, which can be measured with a fluid manometer, the flow velocity in the tube can 
be calculated. If the fluid of which the flow velocity should be measured is the same as the 
manometer fluid, the fluid velocity follows from the read height difference as follows: 
 

          (4.22) 
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 Fig. 4.4.  Measurement of flow velocity by means of a Pitot tube. 
 
 
Naturally, other instruments can also be used for measuring pressure differences, such as 
(difference) pressure gauges. Other instruments such as venturi meters, orifice meters and 
rotameters are also used to measure velocities of fluids. For venturi meters and orifice 
meters the measuring principle rests on pressure differences occurring as a result of 
velocity changes, while the principle of the rotameter is based on the rising height of a float 
in a weakly conical, vertically set up tube. 
 
As a last application of Bernoulli’s law, we will analyse flow through a pipe with a sudden 
widening. A frictionless fluid flows in the steady-state in plug flow through a horizontal pipe 
with diameter S1 (see fig. 4.5.). The pipe with diameter S1 suddenly goes over in a second, 
also horizontally placed, pipe with a larger diameter S2. We are interested here in the force 
Fz,f→w, which the fluid exerts on the walls of the piping system, whereby the (positive) z-co-
ordinate shows in the main flow direction. 
 
This force should be expressed in the density ρ, the pressure p1 and the velocity v1 for the 
widening and the diameters S1 and S2. The pressures p1 and p2 and the velocities v1 and v2 
are average values over the conduit surfaces. 
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 Fig. 4.5.  Flow through a horizontal conduit with a sudden widening. 
 
 
For the description of the system, we use the mass balance, momentum balance and 
mechanical energy balance. According to the (integral) mass balance it is valid that: 
 
         (4.23) 
 
According to the (integral) momentum balance in the main flow direction, it is valid that1): 
 
     (4.24) 

 
According to the law of conservation of mechanical energy, which is applied here between 
the levels “1” and “2”, it is valid that: 
 

        (4.25) 

 
because there is no change in potential energy in this situation. As it is valid, according to 
(4.23), that: 

          (4.26) 

 
1) the control volume here consists of the fluid volume between levels “1” and “2”. 
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v2 in (4.25) can be expressed in the chosen quantities, so that (4.25) can be rewritten as: 
 

        (4.27) 

 
From (4.27), we can read that after the widening a pressure increase occurs, which is caused 
by the released kinetic energy. Substitution of (4.26) and (4.27) into (4.24) gives the 
following expression for Fz,f→w in terms of the chosen quantities: 
 

      (4.28) 

 
Note that the force that the (frictionless) fluid exerts on the wall is always opposite to the 
main flow direction. For a real fluid, i.e. with internal friction, viscous forces would act on 
the walls of the pipe and (4.28) should be modified. In practice, eddies will occur just behind 
the widening (given by W in Fig. 4.5) wherein part of the mechanical energy will be 
converted into internal or thermal energy (“eddy dissipation”). 




















−+=

2

2

12
112 1

2
1

S
Svpp ρ

2
2

1
1

2

2

12
1, 11

2
1 S

S
Sp

S
SvF wfz





















−+








−−=→ ρ



Chapter 5  TRANSPORT PHENOMENA 

48 

5 LAMINAR AND TURBULENT FLOW;  BOUNDARY LAYERS 

 

5.1 Laminar and turbulent flow 

 
In the previous chapters, we did not make a specific discrimination regarding the character 
of the flow. Flows can generally be divided into laminar and turbulent flows. 
 
i) Laminar flow (“layered flow”):  In laminar flow, streamlines do not cross each other. 
This type of flow is associated with “low” flow velocities1) and seldom occurs in process 
apparatus. 
 
ii) Turbulent flow (“flow with eddies”): In turbulent flow, streamlines continuously cross 
each other. Displacement of fluid elements occurs superimposed on the main flow 
direction, where there is “chaotic movement” of these elements. This type of flow is 
associated with “high” flow velocities and frequently occurs in process apparatus. 
 
The concept turbulent flow should not be associated too strongly with the presence of 
eddies. Laminar flow also knows eddies, e.g. behind obstacles placed in the stream (see Fig. 
5.1.). These eddies do, however, straighten out in continuing flow. In this figure, the eddies 
that originate behind a cylinder (“obstacle”) carried in a fluid stream are visualised. The 
quantity R is the Reynolds number Re, defined according to: 
 

          (5.1) 

 

where ρ and η are the density and the dynamic viscosity of the fluid, respectively,  the 
oncoming flow velocity and D the diameter of the cylinder. Check for yourself, by means of 
a dimension analysis, that Re is dimensionless. 
 
The occurrence of turbulence in a flowing fluid can be related to the (in)stability of the flow. 
(Small) disturbances are always present in a flow, even in the absence of obstacles. These 
disturbances can essentially cause the local instability (start of turbulence) in the flow, 
dependent on their being damped out (laminar flow) or strengthened (turbulent flow). 
Whether a disturbance is damped out or strengthened is determined by the viscous and 
inertial forces acting in the fluid. For laminar flow, viscous forces dominate, and for 
turbulent flow the inertial forces dominate.  
 
The relation between the inertial forces and viscous forces that are active in the fluid is 
given by the (dimensionless) Reynolds number Re: 

 
1) Quantification of “low” and “high” flow velocities follows later by means of the Reynolds number, 
abbreviated as Re or R. 
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  Re = inertial forces/ viscous forces  (dimensionless)  (5.2) 
The Reynolds number plays a very important role in fluid dynamics for the characterisation 
of the flow regime (laminar or turbulent) and appears as one of the parameters in the 
dimensionless Navier-Stokes equations. These equations read in vector form1) (for constant 
density and constant dynamic viscosity): 
 

      (5.3) 

 

wherein  is the following differential operator: 
 

        (5.4) 

 

while ∇2 is the Laplace operator that is given in Cartesian co-ordinates as: 
 

        (5.5) 

 

 
 

 
1) This way of notation is only valid for Cartesian co-ordinates. 
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 Fig. 5.1.  Formation of eddies behind a carried-along cylinder at different values of the 
Reynolds number R (=Re). 
We make the above equation dimensionless with the help of a characteristic length 
measure d and the average velocity <v>: 
 

- dimensionless co-ordinates x*, y* and z*: 
 

                           (5.6) 

 

- dimensionless time t*: 
 

          (5.7) 

 

- dimensionless velocity : 
 

     (5.8) 

 

- dimensionless pressure p*: 
 

         (5.9) 

 

If these dimensionless quantities are substituted into equation (5.3), we get the following 
rewritten dimensionless Navier-Stokes equations: 
 

    (5.10) 

 
In (5.10) the Reynolds number Re and the Froude number Fr appear as parameters and are 
respectively defined as: 
 

  = inertial forces/viscous forces   (5.11) 

 

and 
 

  = inertial forces/gravity forces   (5.12) 

 

On the grounds of the definition of the Reynolds number Re, we can already qualitatively 
state that low Re-values correspond to laminar flow and that high Re-values correspond to 
turbulent flow. For pipe flow, Reynolds determined experimentally by means of 
visualisation of the flow by a colour agent, that for Re<2000, flow is laminar and for 
Re>2300, flow is turbulent. In these experiments, a colour agent is injected in the flow 
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direction. For Re<2000, the injected stain was visible as a thin “thread” and hardly1) any 
radial distribution of the stain occurred. For Re>2300 (thus a relatively small increase of the 
average flow velocity), a considerable radial distribution of the stain by arising eddies 
occurred “suddenly” (see Fig. 5.2). 
 

 
 

Fig. 5.2.  Visualisation of the flow in a round tube by means of a stain injected in the flow direction. 
 
Generally, no clear (instability) criterion for the change from laminar to turbulent flow can 
be formulated in terms of Re-values. Only a Re-range can be given within which flow can 
change from laminar to turbulent. 
 
For tube flow the diameter D is taken for the characteristic length measure d in the Re-
number: 
 

         (5.13) 

 
It will be clear that the eddies that are present have a big influence on the radial velocity 
profile. During turbulent flow, in contrast to laminar flow, a considerable convective 
transport occurs perpendicular to the main flow direction as a result of the eddies. As this 
transport mechanism is a lot more effective than the molecular transport mechanism, the 
radial velocity profile for turbulent flow is considerably flatter than for laminar tube flow. 
For laminar flow, we have derived in Chapter 3 that: 
 

            and             (5.14) 

 
It has been experimentally determined for turbulent flow that the radial velocity profile and 
the average velocity approximately satisfy (valid for 104<Re105): 
 

 
1) As a result of radial concentration differences, molecular transport of the stain occurs. This effect can, 
however, be neglected. 
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            and             (5.15) 

 
Both velocity profiles (in dimensionless form) are given in the following figure: 
 
 

 
 Fig. 5.3.  Radial velocity profiles for laminar and turbulent tube flow. 
 
From Fig. 5.3. it seems clear that the eddy transport has a considerable influence on the 
form of the radial velocity profile. For turbulent flow, the velocity profile in the centre of 
the tube is considerably flatter than for laminar flow. In the literature, a large number of 
semi-empirical models are proposed for the description of eddy transport. Only the models 
of Boussinesq and Prandtl are discussed here. 
 
Boussinesq model: 
In this model, it is assumed that the (radial) eddy transport can be described analogously 
to the molecular momentum transport. For the (radial) momentum flux as a result of the 
eddy transport it is valid that: 
 

         (5.16) 

 

where  is the so-called Eddy viscosity which, in contrast to the dynamic viscosity η, is 
not a material constant, but a quantity that is dependent on local flow conditions. In the 
direct surroundings of the wall, eddy transport is not important and molecular momentum 
transport dominates.  
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Prandtl model: 
On the basis of the assumption that movement of eddies in a fluid is analogous to the 
movement of molecules in a gas, Prandtl formulated the following expression for (radial) 
eddy transport wherein the so-called mixing length “l” plays an analogous role to that of 
the mean free path gas kinetic theory: 

         (5.17) 

 

The mixing length l is dependent on the position and is supposed by Prandtl to be 
proportional to the distance from the solid wall that borders the turbulent flowing fluid 
(l=κ(R-r) for tube flow, with κ a proportional constant (κ≈0.36)). 
 
The occurrence of eddies also has important consequences for the relation between the 
applied pressure gradient (-dp/dz) and the resulting volume flow Φv. In the laminar flow 
regime, Φv is proportional to (-dp/dz), while being on approximate proportional to (-
dp/dz)4/7 in the turbulent flow regime. 
 
At the beginning of this paragraph, it was stated that turbulent flow corresponds to a “more 
or less chaotic movement of the fluid elements”. This is, however, a strongly simplified 
version of reality. For turbulent tube flow, e.g., there is a practically random movement of 
the fluid elements in the centre of the tube (the velocity fluctuations in the radial and axial 
directions are practically equal). However, closer to the tube wall, the fluctuations in the 
velocity in the axial velocity component are greater than the fluctuations in the radial 
velocity component, whereby both fluctuations approach zero on the tube wall. The 
physical behaviour of this turbulent flow is, in contrast to laminar flow behaviour, strongly 
dependent on the radial position. Although there is a continuous change in behaviour in 
reality, we can differentiate with increasing distance to the tube wall between the viscous 
sub-layer where molecular momentum transport dominates, the buffer zone where both 
molecular and turbulent momentum transport occur and the area with completely 
developed turbulence where turbulent momentum transport dominates (see Fig. 5.4). 
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Fig. 5.4.  Schematic representation of the structure of a turbulent flow in the surroundings of the 
tube wall. 

5.2 Boundary layers 

 
In practice we are often confronted with flowing fluids where there is a combined transport 
of mass, energy and momentum in the direct surroundings of solid walls. For an accurate 
quantification of these transport processes, information regarding the velocity profile in the 
direct surroundings of the wall is essential. The major part of the velocity change is often 
situated in a thin fluid layer, the so-called boundary layer, which is in contact with the wall 
on the one side, and on the other with the bulk of the fluid. The thickness of this boundary 
layer, given by δ, can be dependent on position and time. In this paragraph, we will look at 
a number of simple examples of similar boundary layer flows. The first example concerns 
the boundary layer development as a function of time (δ=δ(t)), the second example 
concerns the boundary layer development as a function of position (δ=δ(x) with x the flow 
direction). Finally, we will consider the boundary layer development for flow around a 
cylinder and a sphere. 
 

5.2.1   Non steady-state flow along a flat plate 

As first acquaintance with the concept of boundary layers, we study the non steady-state 
flow of a Newtonian fluid along an infinitely long flat plate.  The fluid is flowing in laminar 
flow mode and with a uniform velocity of v∞ parallel to the plate.  Initially the plate moves 
at the same velocity as the fluid. At time t=0, however, the velocity of the plate is suddenly 
brought back to vp, so that a velocity difference originates between the bulk of the fluid and 
the plate. As a result of this velocity difference, the fluid will be slowed down by the plate 
and a disturbance of the velocity profile will occur as is shown qualitatively in the following 

viscous sub-layer

tube wall

buffer zone

zone with completely developed
turbulent flow

time average axial
velocity
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figure. This figure shows the velocity of the fluid with regard to the plate. Further away from 
the plate the relative fluid velocity is v∞ - vp. 
 

 Fig. 5.5.  Non-stationary fluid flow along a flat plate and the qualitative development of  
           the velocity profile in the time t (t1<t2<t3). 
 
It is evident from the above figure that with increasing time t, the initially uniform velocity 
profile is increasingly disturbed. The velocity vx is dependent on y and t, but independent 
of x. Because differences in vx arise in the y-direction, molecular transport of x-momentum 
will occur in the y-direction, i.e. perpendicular to the flow direction. The non steady-state 
problem can be described by means of the following simplified form of the Navier-Stokes 
equations1): 
 

         (5.18) 

 

For the solution of this parabolic partial differential equation, we have to specify one 
starting condition and two boundary conditions that are respectively given by: 
 

              (5.19a) 
And              (5.19b) 

              (5.19c) 
 

The solution of (5.18) under the conditions (5.19) can be obtained by means of the method 
of combination of independent variables2) and reads: 

 
1) Check for yourself which assumptions have been made for the reduction of the x-component of the 
Navier-Stokes equations to the simplified microscopic balance for x-momentum (equation (5.18)). Argue 
why the assumption of one-dimensional flow is principally incorrect. 
2) With the method of combination of independent variables, a partial differential equation can be 
transformed to an ordinary differential equation by means of a “suitable choice” of a “new” variable that 
is a function of the “old” independent variables. Check for yourself that by means of the choice of: 
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the partial differential equation (5.18) transforms to the following ordinary differential equation: 

y
x

v∞-vp v∞-vp v∞-vp

vx(y, t=t1) vx(y, t=t 2) vx(y, t=t3)

t1 t2 t3

2

2

y
v

t
v xx

∂
∂

=
∂
∂

ν

:0=t ∞= vv
0=y px vv =

∞=y ∞= vvx



Chapter 5  TRANSPORT PHENOMENA 

56 

 

         (5.20) 

 

Where “erf” represents the so-called error function or “error integral”, which is defined 
according to: 

         (5.21) 

 

For the error function, which is of great importance for mathematical physics, tables are 
available that give the value of erf(z) as a function of z (see Table 5.1). 
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Table 5.1.   Values of the error function erf(z). 
 

    

 
0.00 
0.05 
0.10 
0.15 
0.20 
0.25 
0.30 
0.35 
0.40 
0.45 
0.50 
0.55 
0.60 
0.65 
0.70 
0.75 
0.80 
0.85 
0.90 
0.95 
1.00 
 

 
0.0000 
0.0564 
0.1125 
0.1680 
0.2227 
0.2763 
0.3286 
0.3794 
0.4284 
0.4755 
0.5205 
0.5633 
0.6039 
0.6420 
0.6778 
0.7112 
0.7421 
0.7707 
0.7969 
0.8209 
0.8427 
 

 
1.10 
1.20 
1.30 
1.40 
1.50 
1.60 
1.70 
1.80 
1.90 
2.00 
2.10 
2.20 
2.30 
2.40 
2.50 
2.60 
2.70 
2.80 
2.90 
3.00 
 

 
0.8802 
0.9103 
0.9340 
0.9523 
0.9661 
0.9763 
0.9838 
0.9890 
0.9928 
0.9953 
0.9976 
0.9981 
0.9989 
0.9993 
0.9996 
0.9998 
0.9999 
0.9999 
0.9999 
0.9999 

 
 
For more clarity, the error function erf(z) is graphically represented again in Fig. 5.6. The 
expression for the shear stress on the wall of the plate τw can be derived by means of 
Newton’s law, with the result: 
 

       (<0)    (5.22) 

 

It follows from the above equation that the momentum flux on y=0 is negative, which can 
also be expected on the grounds of the velocity profile given in Fig. 5.5. From equation 
(5.22) we can read that the velocity profile on y=0, i.e. on the wall of the plate, is given by: 
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         (5.23) 

 

 
 
Fig. 5.6.   The function erf(z), defined by equation (5.21), as a function of z. 
 
 
It follows from equation (5.23) that, by bridging the velocity difference (v∞-vp), the tangent 
on the velocity profile on y=0 crosses the y-axis at a distance , given by: 
 
       (5.24) 
 
The result in dimensionless form is given in the following figure (Figure 5.7). From this figure 
(and table 5.1), we can read that for z= ≈0.886, which corresponds with , the actual 
relative velocity difference between the fluid and the plate  

amounts to about 0.79. For , the relative velocity difference amounts to 
about 0.99, so that on , the change of the relative velocity difference amounts to 
about 1-0.99=0.01. This means that the fundamental change of the fluid velocity is situated 
in a layer with thickness , measured from the plate. This layer, of which the thickness 
increases by the root of the time, we define as the boundary layer. We can also associate 
the quantity  with the penetration depth for molecular momentum transport, which we 
will give as δi. For the penetration depth for molecular momentum transport δi, the 
following is thus valid: 
 
       (5.25) 
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For the analogous heat and mass transport, a similar equation is valid for the penetration 
depth for heat and mass, respectively. In equation (5.25), the kinematic viscosity v should 
then be replaced by the thermal diffusivity “a” and the diffusion coefficient “D”, 
respectively. 
 
 

 
 Fig. 5.7.  Meaning of the quantity δ* , defined by equation (6.59). 
 
 
In conclusion, for clarity, the meaning of the quantity δ*, defined in equation (5.24), is given 
again in relation to the velocity profile developing in time. 
 
 

 
 
 Fig. 5.8.  Physical meaning of the quantity δ*, defined in equation (5.24), for non 
steady-state fluid flow along a flat plate (t1<t2<t3). 
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5.2.2   Steady-state flow along a flat plate 

 
We will now consider the steady-state, non-compressible flow of a Newtonian fluid along a 
non-moving, thin, flat plate. We firstly assume that the flow is laminar and that the fluid 
flows to the plate with a uniform velocity profile. As a result of the plate, a disturbance of 
the uniform velocity profile of the (two-sided) on-flowing fluid will occur, as is qualitatively 
shown in Fig. 5.9. 

 
 
 Fig. 5.9.  Steady-state fluid flow along a thin, flat plate and the qualitative 
development of the velocity profile with increasing x-values. 
 
Fluid particles closely located to the plate slow down the further located fluid elements via 
molecular momentum transfer. This slowing-down activity continues further into the fluid, 
so that the disturbance of the uniform velocity profile of the on-flowing fluid penetrates 
deeper into the fluid with increasing x. The layer in which this disturbance can be noticed 
is also called a boundary layer. Contrary to the previous example, we have here a boundary 
layer of which the thickness δ increases with increasing x. By means of the boundary layer 
theory1), it can be derived that, for the (laminar) boundary layer thickness δ, it is 
(approximately) valid that: 
 

       (5.26) 

 
1) For an introduction into the boundary layer theory, you are referred to the book “Transport Phenomena” 
by R.B. Bird, W.E. Stewart and E.N. Lightfoot. For further study you are referred to the book “Boundary 
Layer Theory” by H. Schlichting. 
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Note that the boundary layer thickness δ increases with the root of x, which is analogous 
to the result of the non steady-state problem that we have studied in the previous 
paragraph. In our minds we can replace the time t from the non steady-state problem by 
the “travel time” x/v∞ for the present stationary problem. As example we calculate the 
thickness of the boundary layer for a flat plate (x=0.25m) which is drifted along by water 
(=10-6 m2/s) with a velocity v∞=1m/s2). Substitution of this data into (5.26) gives: 
 

        (5.27) 
 

For x=0.25m, the boundary layer thickness is therefore δ=2.32mm, which makes it clear 
that the velocity gradient is situated in a very thin layer near the solid wall. By means of the 
boundary layer theory, one can also get an (approximate) expression for the velocity profile 
in the boundary layer, with the result: 
 

       (5.28) 

 

For the force Fx, which is exerted by the fluid on the plate towards which it is flowing from 
both sides (with width B and length L) it is the valid that: 
 

    (5.29) 

 
Blasius obtained an “exact” numerical solution for the (laminar) flowed on plate, and the 
force exerted by the fluid on the plate in the x-direction Fx was subsequently calculated 
from this solution. The result of this calculation is an equation of the same form as (5.29), 
but the constant is 1.328 instead of 1.292. With this adapted constant, we rewrite equation 
(5.29) in a form that connects to the formulation of friction factor for submerged objects 
(see Chapter 6): 
 

    
    (5.30) 

 

where ReL is the Reynolds number concerned with the length L of the plate: 
 

    
      (5.31) 

The “exact” expression for the shear stress τw, which is exerted by the fluid on the wall of 
the plate, reads: 
 

         (5.32) 

 

where Rex is the local Reynolds number, defined according to: 
 

 
2) For these conditions, there is laminar flow of the water. 
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          (5.33) 

It is stressed here that the equations given thus far are valid for laminar flow conditions. It 
is known from experiments that there are laminar flow conditions if the Reynolds number 
based on the  length of the plate, ReL, is smaller than 3.2.105. If ReL>3.2.105, the laminar 
boundary layer flow can turn into turbulent boundary layer flow. The exact Reynolds 
number where the boundary layer flow changes from laminar to turbulent is called the 
critical Reynolds number Rec and is dependent on the experimental conditions such as the 
turbulence intensity of the undisturbed flow. Therefore, a range rather than an exact value 
is often given in literature for the Rec: 3.105<Rec<3.106. 
 
We will subsequently consider the situation where the flat plate is flowed along by a 
turbulent flowing fluid. Analogous to the laminar flow situation, a laminar boundary layer 
will be formed1) from x=0, of which the thickness δ increases with increasing x. Because of 
the higher velocity v∞, the boundary layer will be formed over a shorter length x.  As a result 
of the slowing down of the fluid elements, the inertial forces are dominated by the viscous 
forces in the direct vicinity of the plate. The with x increasing boundary layer thickness has 
as result that with increasing x, the inertial forces will gradually dominate the viscous forces 
so that flow becomes unstable. A change from laminar to turbulent flow can therefore 
occur in a relatively small area, the so-called transformation-area. Whether this change 
really occurs depends on the length of the plate L; with a short plate the change may not 
occur, while with a very long plate the laminar part at the beginning of the plate is of minor 
importance. Eddies originate in the area of change, whereby no further development of the 
laminar boundary layer occurs. These eddies quickly extend to the plate and result in a 
turbulent boundary layer with little further change. Analogous to the situation for turbulent 
tubular flow, we can differentiate between the viscous sub-layer, the buffer layer and the 
turbulent (undisturbed) bulk behind the area of change in increasing distance from the 
plate (see Fig. 5.10). 
 

 
 

 
1) Despite the fact that there is turbulent on-flow conditions in the fluid, a laminar boundary layer is formed 
at the beginning of the plate.  
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Fig. 5.10.  The change from a laminar to a turbulent boundary layer for a flat plate, towards which 
a turbulent fluid flows2). 
 
The turbulent boundary layer thus consists of the viscous sub-layer in which the momentum 
transport perpendicular to the x-direction is completely dominated by molecular transport, 
while there is combined molecular and turbulent momentum transport in the buffer layer. 
The following expression for the local shear stress on the wall of the plate τw in the turbulent 
boundary layer was found empirically: 
 

        (5.34) 

 
For the calculation of the force acting on the plate, we can differentiate between two 
situations: 
 
A) There is a turbulent boundary layer flow over practically the whole plate. For the force 
Fx, which is exerted in the x-direction on the plate, it is valid for double-sided on-flow that: 
 

     (5.35) 

 
B) There is a laminar boundary layer flow over the beginning of the plate and turbulent 
boundary layer flow over the end of the plate. In this case it is valid for the force Fx, which 
is exerted on the plate for double-sided on-flow that: 
 

      (5.36) 

 
Substitution of equations (5.32) and (5.34), which respectively give the shear stress on the 
wall of the plate for the laminar beginning and the turbulent end, into (5.36), gives after 
integration: 
 

  (5.37) 

 
Considering the differentiation made in this paragraph, it should be noted here that the 
laminar part (at the beginning) is always present, but if xc<<L, the contribution of the 
beginning may be neglected for the calculation of Fx. 
 
 

 
2) By {vx}, the average time value of the on-flow velocity is meant. For turbulent flow, the pressure and 
velocity vary in time around a given average value. 
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5.2.3 Steady-state flow around cylinder and sphere 

 
We will now consider the steady-state, non-compressible, flow of a Newtonian fluid around 
a cylinder and a sphere. In contrast to the situation for flow along a flat plate, which was 
looked at in the previous paragraph, it is possible that with flow around a cylinder and 
around a sphere, release of the boundary layer can occur. This boundary layer release has 
important consequences for the size of the force exerted by the fluid on the object and will 
be analysed more closely for flow around a sphere. 
 
As boundary layer release is closely connected to the pressure distribution in the boundary 
layer, we will concentrate on that. For simplification, we assume an ideal, i.e. frictionless, 
fluid. According to the law of Bernoulli for frictionless flow, it is valid along one streamline 
that: 
 

        (5.38) 

 
Here p∞ and v∞ are the pressure and velocity at a great distance from the sphere, 
respectively. According to the law of Bernoulli the sum of the static pressure p and the 
kinetic energy per volume unit is constant in this situation. On the basis of the law of 
Bernoulli, the qualitative distribution of the pressure, shown in the following figure, will be 
clear. At the front and back of the sphere, the flow velocity v is low, and therefore the 
pressure p will be high1). On both top and bottom side of the sphere, the flow velocity v is 
high and the pressure p low, and a part of the static pressure is thus converted to kinetic 
energy. These changes in pressure and velocity around the sphere are primarily a result of 
the geometry. 
 

 
 
 Fig. 5.11.  Qualitative course of the static pressure and the kinetic energy (velocity) 
for the flow of a frictionless fluid around a sphere. 
 

 
1) The points A and B are called the stagnation points. 
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This pressure distribution around the sphere means that there is a negative pressure 
gradient and a positive pressure gradient present at the front and back, respectively1). 
Therefore, an acceleration of the fluid elements will occur at the front and a deceleration 
at the back. If there is no friction, then the fluid at the ends of the low pressure has enough 
kinetic energy to build the high pressure that is prevalent at the front up again at the back. 
Regarding the vertical centre-line through the sphere, there is a symmetrical flow situation. 
As a result of this symmetry, a (hypothetical) frictionless fluid will thus not exert a net force 
on the sphere. This result is known in hydrodynamics as the paradox of d’Alembert. In 
reality, a resulting force is exerted on the sphere because of the friction.  
 
We will subsequently consider the flow of a real fluid, i.e. a fluid with internal friction, 
around a sphere at different values of the Reynolds number Re. For the submerged sphere 
(and cylinder), the diameter D is taken as the characteristic measure of length in the 
Reynolds number Re: 
 

        (5.39) 

 
Dependent on the value of the Reynolds number Re, we can differentiate between different 
flow regimes. For Re<0.1, the streamlines seem to completely conform to the shape of the 
sphere (see Fig. 5.12), and the inertial forces have no influence on the momentum exchange 
between the fluid and the sphere. If the flow direction is reversed, the position of the 
streamlines does not change, which again means that there is symmetry with regard to the 
vertical centre-line through the sphere. This type of flow is called creeping flow and for the 
force F, which the sphere experiences in the flow direction, the law of Stokes is then valid: 
 
        (5.40) 
 
Stokes derived equation (5.40) in the nineteenth century on the basis of the Navier-Stokes 
equations. Note that the form of this equation is completely analogous to equation (3.16) 
for the viscous force exerted on the wall of a laminar round tubular pipe. The law of Stokes 
is applied, among others, to describe the movement of colloidal particles under the 
influence of an electric field, for the theoretical description of sedimentation phenomena 
and for the study of the behaviour of particles in aerosols.  
 
For Re>0.1, the symmetry regarding the vertical centre-line through the sphere is lost and 
the law of Stokes is no longer valid1). From experiments where the flow in the direct vicinity 
of the sphere was visualised, it seems that a release of boundary layers occur, for Re≥4. The 
streamlines are not running smoothly around the sphere anymore, and a wake, i.e. an area 
with an internal circulation2), originates behind the sphere. The point of boundary layer 
release, the so-called separation point S, is dependent on the Reynolds number3). With 

 
1) If the pressure gradient is negative, the pressure decreases in the flow direction, if the pressure gradient 
is positive, the pressure increases in the flow direction. 
1) For Re=1 the law of Stokes predicts a value for the force F which is about 10% too low.  
2) In this area the fluid flows around and an eddy is thus formed. 
3) Boundary layer release actually occurs for points on a circle of which the centre point lies on the 
horizontal (i.e. lying in the main flow direction) centre-line through the sphere. 
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increasing Re-value, the separation point S moves towards the front of the sphere. From 
these experiments it also seems that back-flow of the fluid occurs behind the separation 
point S. We will now aim to explain this seemingly strange behaviour of the fluid. 
 
Where a real fluid flows around a sphere, a (thin) boundary layer will form in the direct 
vicinity of the wall of the sphere, in which the fundamental velocity gradient is localised 
(see Fig. 5.13). 

 
 
 Fig. 5.12.  The qualitative course of the streamlines for increasing values of the 
Reynolds number Re (Re=1, 4, 40). 
 
Apart from the boundary layer, a conversion of pressure energy to kinetic energy occurs 
during the flow from D to E, while the reverse process occurs during the flow from E to F. 
Fluid particles that move around the sphere outside of the boundary layer will have the 
same velocity at points D and F, as no internal friction occurs outside of the boundary layer. 
However, fluid particles moving in the direct vicinity of the sphere, i.e. inside the boundary 
layer, will lose an (important) part of their energy as a result of the great (viscous) friction 
forces. Therefore, not enough kinetic energy can be built up at point E to overcome the 
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externally applied positive pressure gradient that the particles experience along the 
trajectory from E to F. This means that after point S, the so-called separation point where 
all the kinetic energy built up at point E is fully consumed, the positive pressure gradient 
forces the fluid particles to flow back, which causes the release of the boundary layer at 
point S. It is useful to note here that the local pressure outside the boundary layer is “passed 
on” to the boundary layer. 
 
 
 

 
 
 Fig. 5.13.  Qualitative representation of the boundary layer release on the surface of 
a submerged sphere. Point S represents the separation point. 
 
Analogous processes occur for flow around a cylinder and therefore this geometry will not 
be discussed separately. Instead, as illustration, a few photos are given in the following 
figure, which illustrate the development of the flow pattern around a cylinder as a function 
of time1). The experiment has been carried out so that the fluid is set into motion from a 
resting condition. The velocity with which the cylinder is approached increases from top 
left to bottom right. As seems from the first photo, there is a symmetrical course of the 
streamlines during the initial phase (low flow velocity), and no boundary layer release 
occurs. In the second photo, however, we see that boundary layer begins to let go at the 
back of the cylinder, i.e. close to the back stagnation point. In the third photo, boundary 
layer release occurs sooner, i.e. in front of a point situated more upstream. In the rest of 
the photos, the formation of eddies in the wake of the cylinder can be seen clearly.  
 
 
 
 
 

 
1) In the pictures given in Figure 5.14, the streamlines are made visible by means of tracer particles. 
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Fig. 5.14.  Boundary layer release and formation of eddies behind cylinder. 
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An important (disadvantageous) result of the occurrence of boundary layer release and the 
formation of eddies connected therewith, is that the kinetic energy released through the 
geometry is partly dissipated and is therefore not available for the pressure increase any 
more. The net effect of this eddy dissipation is therefore a loss of pressure, i.e. a loss of 
mechanical energy. Through this, flow around objects have, apart from the already 
introduced friction drag, a so-called form drag. The form drag of flow around an object can 
be defined as the irreversible conversion of kinetic energy to internal energy as a result of 
eddy dissipation. The occurrence of boundary layer release and the form drag associated 
with it, is very much dependent on the shape of the object. As the shape change of the 
surface on the back side of a object occurs more gradually, the streamlines can adapt to the 
form more easily and boundary layer release will occur more slowly, which is advantageous 
for the friction factor of the object.  
 
We will now still discuss the friction factors of the objects represented in the following 
figure: object A: a sphere with diameter D, object B: a drop with diameter D, object C: a 
sphere with diameter (1/2)D and object D: a round disc with diameter D. 
 
 

 
 
 Fig. 5.15. flow around objects: A: a sphere with diameter D, B: a drop with diameter 
D, C: a sphere with diameter D/2 and D: a round disc with diameter D. 
 
For low flow velocities, object A will have a lower friction factor than object B, because the 
friction drag, which is determining for low flow velocities, acts on a smaller surface. For high 
flow velocities, however, the situation is reversed and object A (despite the smaller wetting 
surface) has a higher friction factor than object B because the form drag of object A, which 
is determining for high flow velocities, is higher than that of object B. For very high flow 
velocities, object C (despite the smaller diameter) can have an even higher friction factor 
than object B. Object D has the highest form drag and, for sufficiently high flow velocities it 
is valid for the force F, which is exerted perpendicular to the plate, that: 
 

          (5.41) 

 
In the following chapter, we will look at the quantification of the friction factors of flow 
around cylinder and sphere more closely. 
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6 BERNOULLI’S LAW FOR FLOW WITH FRICTION; FRICTION FACTORS 

 
We have already encountered Bernoulli’s law for frictionless flow in chapter 4. We have 
subsequently analysed a few flow problems where friction is of secondary importance, on 
the basis of this law. However, in many process apparatus we are confronted with flow 
where friction plays an important role. This friction causes a loss of mechanical energy. 
There can also be exchange of work between the flowing medium and the process 
apparatus through which it flows. Here, the medium can basically both experience a net 
uptake (pump) or loss (turbine) of mechanical energy. It will be clear that, for a quantitative 
description of these processes, Bernoulli’s law should be extended. This extended law of 
Bernoulli is of essential importance for the technical flow studies (pressure drop 
calculations) and will be discussed in the following paragraph. 
 

6.1 Extended Law of Bernoulli 

In Chapter 4, we have already encountered the law of Bernoulli for frictionless flow: 
 

        (6.1) 

 
This equation is the expression of the rule of conservation of mechanical energy for steady-
state (frictionless) flow: the change (∆=”2” – “1”) of the sum of all forms of mechanical 
energy is zero, i.e. the sum of all forms of mechanical energy remains constant for the flow 
between two points “1” and “2” in the flow field. For the adaptation of (6.1) to the extended 
law of Bernoulli, we define: 
 
 ef:    the amount of mechanical energy lost per mass unit fluid  
                    between points “1” and “2” (J/kg). 
 
 au:      the net amount of mechanical energy (work) supplied per mass unit  
                    between “1” and “2”  (J/kg). 
 
After modifying (6.1), the following expression for the macroscopic mechanical energy 
balance, i.e. the Bernoulli’s law for flow with internal friction, results: 
 

    ∆ �1
2
〈v3〉

v
� + ∫ 𝑑𝑑𝑑𝑑

𝜌𝜌
+ ∆(𝑔𝑔ℎ)2

1 = 𝑎𝑎𝑢𝑢 − 𝑒𝑒𝑓𝑓     (6.2) 

 
According to this law, the change (∆= “2” – “1”) of the sum of the different forms of 
mechanical energy (per mass unit) equals the work supplied between “1” and “2”, minus 
the amount of mechanical energy (per mass unit) that is lost between “1” and “2”. All terms 
in (6.2) have the dimension J/kg (amount of mechanical energy per mass unit). The quantity 
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au can be positive or negative. If au>0, net work is done on the fluid between “1” and “2”. 
However, if au<0, net work is extracted from the fluid between “1” and “2”. The quantity ef 
is always positive for a Newtonian fluid1). We get an alternative formulation of (6.2), which 
is useful for pipes, by multiplying (6.2) with the mass flow Φm (kg/s): 
 

  𝜑𝜑𝑚𝑚 �
1
2
〈v3〉

v
− 1

2
〈v13〉
〈v1 〉

�+ ∫ 𝑑𝑑p
𝜌𝜌

+ (𝑔𝑔ℎ2 − 𝑔𝑔ℎ1)2
1 = 𝜑𝜑𝑚𝑚�𝑎𝑎𝑢𝑢 − 𝑒𝑒𝑓𝑓� = 𝐴𝐴𝑢𝑢 − 𝐸𝐸𝑓𝑓  (6.3) 

 
where the “∆-formulation” has been worked out. The quantity Au represents the net 
amount of work done on the fluid between “1” and “2”: 
 
         (6.4a) 

 
  𝐸𝐸𝑤𝑤 = Φ𝑚𝑚𝑒𝑒𝑓𝑓 = (𝜌𝜌 〈v〉 𝑆𝑆) 𝑒𝑒𝑓𝑓        (6.4b) 
 
In equation (6.3), the term ef (or Ef) should be specified more closely in terms of the 
macroscopic system variables such as the average flow velocity <v>, which comes under 
discussion in the following paragraphs. As we do not have detailed information on the 
velocity profiles for such complex systems, the term ef has to be determined empirically in 
these situations.  
 
Concerning equation (6.3), we can summarise that it is valid for: 
 
- for laminar and turbulent flow, 
- for a macroscopic system, 
- for non-ideal fluids, 
- for compressible fluids, 
- situations where net work is done on or by the fluid. 
 

6.2 Friction factors 

In the previous chapters, we concentrated on the analysis of relatively simple flow 
problems. As described in Chapter 3, we can basically describe all laminar single-phase 
flows with the Navier-Stokes equations. If these equations can be solved under the 
specification of “suitable” conditions (analytical or numerical), the flow friction can be 
calculated on the basis of the calculated pressure and velocity profiles. In Chapter 3, we 
have seen a few examples of this, such as the tubular pipe and the flow in an annular space. 
An analogous method is possible for turbulent single-phase flow, on the understanding that 
(approximate) semi-empirical models are needed.  

 
1) For proof you are referred to the book “Transport Phenomena” by R.B. Bird, W.E. Stewart and E.N. 
Lightfoot. 

( ) uumu aSvaA ><=Φ= ρ
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In practice, we are often confronted with turbulent flows in systems with very complex 
geometry, so that, even with the very advanced computer models available nowadays, it 
becomes practically impossible to calculate the detailed pattern of the pressure and 
velocity. As we can then also not calculate the flow resistance, we will have to call on 
experimental data for the quantification of the flow resistance of these systems. In order to 
be able to use the experimental data efficiently, we will handle “correlations” that describe 
geometrically similar systems in terms of a number of characteristic dimensionless 
quantities. 
 
Regarding the geometry, it can be noted that in very complex systems in practice, we only 
encounter two types of flow situations: flow through pipes and flow around objects. Here 
“pipes” should be interpreted widely. Examples of this category are: flow through a tube, 
flow through a rectangular canal that is open at he top, and flow through a filter. Examples 
of flow around objects are: flow around an aeroplane, flow around a bundle of pipes of a 
heat exchanger, and flow around a particle in a packed bed. For flow through pipes, one is 
often interested in the relation between the pressure drop over the pipe and the resulting 
volume flow. For flow around objects, one is only interested in the relation between the 
velocity with which the object is approached by a specific fluid and the force that the object 
experiences as a result. For both pipes and flow around objects, a flow resistance manifests 
itself in the form of an occurring pressure drop ∆p. This pressure drop (loss of an amount 
of mechanical energy per volume unit) corresponds to the term ρew from the macroscopic 
mechanical energy balance (equation (6.3))1).  
 
However, pressure change in flowing systems can have several causes. Apart from friction, 
a velocity change, a height change or supplied or removed work can cause pressure 
changes. The pressure change mentioned here is, however, determined completely by the 
flow resistance. Regarding flow resistance, we can differentiate between the following 
types: friction drag and form drag. For pipes with a constant diameter, flow resistance is 
determined completely by the friction drag, while for flow around obstacles, both friction 
drag and form drag generally play a role. 
 

6.2.1 Friction factors for flow around objects 

A force F, of which the resultant F is in the same direction as the flow velocity v∞ is exerted 
by the fluid on the surface when the fluid flow around the object. The force F, which is 
experienced by the object, is expressed (for the whole Re-area) as a product of the 
characteristic surface A, the kinetic energy per volume unit of the approaching fluid and a 
dimensionless quantity CD, the so-called drag coefficient: 

 
1) We can write all terms in equation (6.3) as the product of the volume stream Φv(m3/s) and a quantity 
that has the dimension of an amount of energy per volume unit (J/m3)( Φmew=Φv(ρew)). 
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  𝐹𝐹 = 𝐶𝐶𝐷𝐷𝐴𝐴 �
1
2
𝜌𝜌v∞2 �        (6.5) 

 
The drag coefficient Cw is dependent on the geometry and the flow conditions (Re-number). 
It generally has to be determined on the basis of experimental data. We will subsequently 
give the Re-dependency of Cw1) for flow along a flat plate and flow around a cylinder and a 
sphere. 
 
Flow along a flat plate: 
For flow along a flat plate approached on both sides by laminar flow, it is valid for the force 
F exerted on the plate in the flow direction that: 
 

  𝐹𝐹 = 1.328(𝑅𝑅𝑅𝑅𝐿𝐿)−0.5(2𝐵𝐵𝐵𝐵) �1
2
𝜌𝜌v∞2 �      (6.6a) 

 
The surface 2BL is taken as characteristic surface for the flat plate, so that, after comparison 
with the general expression (6.5), we can conclude that it is valid for the drag coefficient Cw 
that: 
 
  𝐶𝐶𝐷𝐷 = 1.328(𝑅𝑅𝑅𝑅𝐿𝐿)−0.5       (6.6b) 
 
In the case of a flow along a flat plate on both sides, where the laminar beginning plays a 
secondary role, it is valid for the force F, exerted on the plate in the flow direction, that: 
 

        (6.7a) 

 

Comparison of (6.7a) to (6.5) gives, with the choice A=2BL, the following expression for CD 
in the turbulent flow regime: 
 

  𝐶𝐶𝐷𝐷 = 0.074(𝑅𝑅𝑅𝑅𝐿𝐿)−0.2       (6.7b) 
 
Comparison of (6.6b) to (6.7b) shows that the drag coefficient CD is less strongly dependent 
on the Reynolds number ReL in the turbulent flow regime than in the laminar flow regime. 
If both the laminar beginning and the turbulent end are of importance for the force action 
on the plate, it is valid for CD that (check this for yourself!): 
 

 𝐶𝐶𝐷𝐷 = 1.328(𝑅𝑅𝑅𝑅𝑐𝑐)−0.5 �𝑥𝑥𝑐𝑐
𝐿𝐿
� + 0.074 �(𝑅𝑅𝑒𝑒𝐿𝐿)−0.2 − (𝑅𝑅𝑅𝑅𝐿𝐿)−0.2 �𝑥𝑥𝑐𝑐

𝐿𝐿
��  (6.8) 

 

The term (xc/L) gives the length of the laminar beginning with regard to the total length of 
the plate. If this term is very small, (6.8) reduces to (6.7b) according to our expectations. 

 
1) The correlations for CD presented here are valid for non-compressible fluids. If the approaching fluid is 
compressible, Re is also, apart from CD dependent on the Mach-number M. The Mach-number is defined 
as the relation between the flow velocity v∞ and the sound velocity c: M=v∞/c. It seems that the effect of 
compressibility becomes of importance at M≈0.3. 
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Flow around a cylinder: 
For perpendicularly flow around a cylinder, the surface projected in the flow direction is 
taken for the characteristic surface A: A=DL. In the following figure, the drag coefficient CD 
for the perpendicularly approached cylinder is given as function of the Reynolds number. 
 
From this figure, it seems that CD is inversely proportional to Re for low Re-values, while CD 

reaches a more or less constant value for high values of Re. Note that the value of CD 

suddenly decreases for Re≈5.105. This phenomenon, which also occurs at flow around a 
sphere (in this case Re≈3.105), is connected with the change of a laminar boundary layer 
into a turbulent boundary layer before boundary layer release occurs. As a result of this 
change, boundary layer release occurs more at the back of the cylinder (sphere) and the 
form drag, and thus CD, decreases. 

 
  

Fig. 6.1.  The drag coefficient CD as a function of the Reynolds number Re for perpendicular  
                flow around a cylinder. 
 
 
Flow around a sphere: 
For flow around a sphere, the surface projected in the flow direction is taken as the 
characteristic surface: A=(1/4)πD2. In the creeping flow regime, it is valid (according to the 
law of Stokes) for the force F, exerted on the sphere, that: 
 

          (6.9a) 
 

 

DvF ∞= πη3

 
η

ρ Dv∞=Re

CD 
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Comparison of (6.9a) to (6.5) gives the following expression for the drag coefficient CD in 
the creeping flow regime (Re<0.1): 
 

  CD = 24
Re

        (6.9b) 
 

An often used empirical correlation, which, in contrast to (6.9b), is valid for the whole 
Reynolds range, reads1): 
 

  CD = 24
Re

(1 + 0.15(Re)0.687) if:   Re<1000   (6.9c) 
 

  CD=0.44 if:   Re≥1000   (6.9d) 
 

Note that (6.9c) reduces to (6.9b) for low Re-values. In Fig. 6.2, CD is given graphically as a 
function of Re. 

 

    

 

Fig. 6.2.  Drag coefficient CD as function of the Reynolds number Re for a submerged sphere. 
 
The values of CD and the dependence on Re are of special importance for the description of 
the movement of particles in a fluid, and will be examined more closely here on the basis 
of free falling spherical particles. We consider a spherical particle with diameter dp, falling 
in the steady-state (in the positive z-direction) in a fluid (gas or liquid) with the velocity 
difference vp. This velocity is measured according to a non-moving co-ordinate system 
where the z-co-ordinate shows in the direction of vp. According to the second law of 
Newton, it is valid that: 

 
1) If Re>3.105, the laminar boundary layer changes to a turbulent boundary layer and CD (“suddenly”) 
takes on a considerably lower value (see Fig. 6.2). 

η
ρ Dv∞=Re

CD 
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        (6.10) 

 
where mp is the mass of the sphere. In the right hand side of (6.10) the sum of the forces 
acting on the particle is given. Gravity Fz, the upward force Fo and the force as a result of 
friction Fw act on the sphere. Gravity is in the direction of vp, while the upward force and 
the friction force are in the opposite direction. Substitution of all the forces in (6.10) gives: 
 

  1
6
𝜋𝜋𝑑𝑑𝑝𝑝3𝜌𝜌𝑝𝑝

𝑑𝑑𝑣𝑣𝑝𝑝
𝑑𝑑𝑑𝑑

= 1
6
𝜋𝜋𝑑𝑑𝑝𝑝3�𝜌𝜌𝑝𝑝 − 𝜌𝜌𝑓𝑓�𝑔𝑔 − 𝐶𝐶𝐷𝐷 �

1
4
𝜋𝜋𝑑𝑑𝑝𝑝2�  �1

2
𝜌𝜌𝑓𝑓𝑣𝑣𝑝𝑝2�   (6.11) 

 
In (6.11), ρp is the density of the particle and ρf the density of the fluid. For a steady-state 
falling sphere (falling at its terminal velocity), dvp/dt=0, so that the general equation of 
motion for the sphere reduces to: 
 

  1
6
𝜋𝜋𝑑𝑑𝑝𝑝3�𝜌𝜌𝑝𝑝 − 𝜌𝜌𝑓𝑓�𝑔𝑔 = 𝐶𝐶𝐷𝐷 �

1
4
𝜋𝜋𝑑𝑑𝑝𝑝2�  �1

2
𝜌𝜌𝑓𝑓𝑣𝑣𝑝𝑝2�     (6.12) 

 
In the above equation, CD is dependent on the Reynolds number and thereby dependent 
on the velocity vp. We will subsequently discuss two limit cases of (6.12), whereby an 
analytical expression for the velocity difference can be obtained. 
 
Limit case a): The law of Stokes is valid (Re<0.1): 
If Re (=ρfvpdp/η) is smaller than 0.1, equation (6.9b) is valid for CD. Substitution of (6.9b) 
into (6.12) gives, after calculation: 
 

         (6.13) 

 
After calculation of vp, we should naturally check whether the condition Re<0.1 was indeed 
complied with. It can qualitatively be stated that this situation occurs for “small’ values of 
the particle diameter dp and for “high” values of the dynamic viscosity η of the fluid. 
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Limit case b): CD is a constant: CD =0.44 (103<Re<105): 
If 103<Re<105, valid by good approximation that CD=0.44. If CD is a (known) constant, (6.12) 
can be written as: 
 

  vp=�4dp�ρp-ρf�g
3CDρf

       (6.14) 

 
After calculation of the velocity difference vp, we will here also have to check whether the 
condition 103<Re<105 was indeed complied with.  
 
In the Reynolds range 1<Re<1000, the velocity difference can be determined graphically. 
For this, equation (6.12) is rewritten in the following dimensionless form: 
 

  CDRe2= 8
6
ρf �ρp-ρf� g dp

3

η2 = 8
6

Ar       (6.15) 

 
 

Fig. 6.3.  The quantity CDRe2=(8/6)Ar as a function of the Re-number for spherical particles. 
The discussed limit situations are also given in this figure 
 
Here Ar is the (dimensionless) number of Archimedes. The right hand side of (6.15) is a 
known quantity for a given fluid-particles-system. By means of the following figure, the 
value of Re and therewith the value of vp can be determined by calculation CDRe2=(8/6)Ar. 
For more clarity, the discussed limit cases are also given in figure 6.3. 
 
As a conclusion of this paragraph, we will still concentrate on the quantification of the 
amount of mechanical energy per time unit being changed into internal energy for a 
submerged object. We thus actually consider the term Φmew=Ef from the macroscopic 
energy balance. The amount of mechanical energy dissipated per time unit Ef  is equal to 
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the product of the force F, which is exerted on the object and the distance v∞ travelled by 
the fluid per time unit: 
 

  𝐸𝐸𝑓𝑓 = Φ𝑚𝑚𝑒𝑒𝑓𝑓 = 𝐹𝐹v∞ = 𝐶𝐶𝐷𝐷𝐴𝐴 �
1
2
𝜌𝜌v∞3 �      (6.16) 

 

If the value of the drag coefficient is known, the value of Ew can be calculated by means of 
(6.16). On the other hand, in certain situations, such as for flow around a sphere in the 
creeping flow regime, the term Ew can be calculated analytically. The force F, which the fluid 
exerts on the object, can then be determined by means of (6.16) from the amount of 
mechanical energy dissipated per time unit.  
 

6.2.2 Friction factors for tubular pipes 
 

For a pipe, the fluid will exert a force F on the wetted surface (the inside wall of the pipe), 
of which the resultant F shows in the same direction as the average velocity <v>. Analogous 
to flow around objects, F (for the complete Re-range) is expressed as the product of a 
characteristic surface A, the average kinetic energy per volume unit of the fluid flowing 
through the pipe and a dimensionless quantity f, the so-called friction coefficient: 
 

          (6.17) 

 

For flow through systems, we take the wetted surface as the characteristic surface A. The 
friction coefficient f is dependent on the geometry of the tube and the flow conditions (Re-
number) and must generally be determined on the basis of experimental data. For flow 
through systems, we are often interested in the relation between the pressure drop over 
the tube ∆p and the resulting average flow velocity <v>. It is therefore suitable to express 
the force F, exerted on the wetted surface, in pressure drop ∆p in the definition equation 
of the friction coefficient f. 
 
We therefore consider the steady-state flow of a fluid through a tube with length L. The 
surface S of the tube is constant and the wetted circumference amounts to Z (see Fig. 6.4). 
According to an integral or macroscopic momentum balance for the control volume V=SL, 
it is valid in steady-state condition that: 
 

       (6.18) 
 

Here τw is the average shear stress over the wetted surface (=Z.L), which the fluid exerts on 
the surface. The force F, exerted on the wetted surface is a product of τw and (Z.L). After 
combination of (6.17) and (6.18), the following equation results, known as the equation of 
Fanning:   

                                            (6.19) 
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Fig. 6.4.  Flow through a tube with constant diameter S, wetted surface Z and length L. 
 
The quantity (4S/Z) is called the hydraulic diameter dh, which, by addition of the factor 4 to 
equation (6.19), equals the tube diameter D for the round, tubular conduit: 
 

    (for a round tube) 

         (6.20) 
 

By means of the hydraulic diameter dh, we can write the equation of Fanning as: 
 

         (6.21) 

 

As we have not made any assumption concerning the geometry of the surface S for the 
derivation of the equation of Fanning, (6.21) is valid for a tube with an arbitrary diameter. 
In the following figure (figure 6.5), the definition of the hydraulic diameter is given for a 
number of flow situations. The friction coefficient f is dependent on the geometry and the 
flow conditions (Re-number) and must generally be determined on the basis of 
experimental data. However, in the laminar flow regime, an analytical expression can be 
obtained for f on the basis of the Hagen-Poiseuille equation derived in Chapter 3. For the 
relation between the pressure drop ∆p=p0-pL and the average velocity <v>, it is then valid 
(Re<2000): 
 

         (6.22) 
 

Comparison of (6.22) to (6.21) gives, with dh=D, the following expression for the friction 
coefficient f in the laminar flow regime (Re<2000): 
 

         (6.23) 
 

In the turbulent flow regime, the empirical relation of Blasius is valid for f for smooth 
streamed through tubes: 
 
          for:     4.103<Re<105    (6.24) 
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Note that in the turbulent flow regime for 4.103<Re<105, the pressure drop ∆p is 
proportional to <v>1.75, while ∆p is proportional to <v> in the laminar flow regime. For 
pressure drop calculation in practice one frequently uses graphs giving f as function of the 
Re-number (see Fig. 6.6). 
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 Fig. 6.5.  The hydraulic diameter dh for a number of flow situations. 
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Through the introduction of the hydraulic diameter, this graph is also applicable for flow 
through pipes and channels that have a different geometry than the streamed through 
round tube (see Fig. 6.5). Here one uses the hydraulic diameter dh instead of the tube 
diameter D for the characteristic length measure in the Re-number: 
 

         (6.25) 

 
This approximation is only well valid for strong turbulent flow, i.e. for high Re-values. In Fig. 
6.6, a number of (dashed) lines for tubes with rough inside walls are given next to the line 
for smooth tubes in the turbulent range. It follows from this figure that, for rough pipes, 
the friction coefficient f is dependent on Re and on the dimensionless quantity x/dh. The 
quantity x is the average roughness of the inside tube surface. From Fig. 6.6 it seems that 
the roughness of the wall results in an increase of f and thus an increase in the pressure 
drop. Apart from this, for a specific value of x/dh, the influence thereof on f, regarding the 
smooth wall, increases by Re up to an Re-number where the curves will run parallel to the 
horizontal axis. 

 
 Fig. 6.6.  The friction factor f as function of the Re-number. The parameter x/dh 

represents the relative roughness of the tube wall. 
 
This behaviour can be explained as follows. For “low” Re-values, the thickness of the viscous 
sub-layer is larger than the average roughness of the tube surface, so that the roughness 
does not stick through the sub-layer. In this situation, the effect of the roughness is limited 
to an increase of the wetted surface, so that f is (slightly) higher compared to a smooth-
walled tube. If the flow becomes stronger turbulent, the thickness of the viscous sub-layer 
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decreases so that the roughness partially protrudes through the viscous sub-layer. We then 
actually have an “obstacle” placed partially in the turbulent bulk of the flow. For sufficiently 
high Re-numbers, the friction factor of an obstacle is completely determined by the form 
drag, and is then purely proportional to (1/2)ρ<v>, and not dependent on Re any more. As 
the roughness increases, this situation occurs more readily and f takes on a constant value 
for lower Re-values. 
 
The pressure drop ∆p, according to equation (6.21), actually represents the amount of 
mechanical energy converted to internal energy per volume unit, so that we can write the 
following for the term Φmef=Ef in the macroscopic energy balance (equation (6.3)): 
 

  𝐸𝐸𝑓𝑓 = Φ𝑚𝑚𝑒𝑒𝑓𝑓 = Φv𝜌𝜌𝑒𝑒𝑓𝑓 = Φv(∆𝑝𝑝)friction = Φv �4𝑓𝑓 𝐿𝐿
𝑑𝑑ℎ
�1
2
𝜌𝜌〈v〉2��  (6.26) 

   
From the above equation then follows for the amount of mechanical energy being 
converted to internal energy (=ef) per mass unit: 
 
  𝑒𝑒𝑓𝑓 = 4𝑓𝑓 𝐿𝐿

𝑑𝑑ℎ
�1
2
𝜌𝜌〈v〉2�    (J/kg)                                                                          (6.27) 

 
Up to now we have limited ourselves in this paragraph to flow through tubes or pipes. In 
practice, we often encounter systems where, apart from straight parts, bends, turns, 
constrictions or widenings, stop-valves etc. occur, which cause extra flow resistance. The 
friction factor for high Re-values, which we are often confronted with in practice, is 
especially determined by the form drag, so that occurring pressure drop can be written as: 
 

    ∆𝑝𝑝 = 𝑘𝑘𝑓𝑓 �
1
2
𝜌𝜌〈v〉2�              𝑒𝑒𝑓𝑓 = 𝑘𝑘𝑓𝑓 �

1
2
〈v〉2�       (6.28) 

 

Here kf is a resistance coefficient that should be determined empirically (pressure drop 
measurement). Fig. 6.7. gives an overview of kf-values for a number of different pieces of 
equipment. With the use of kf-values, one should always check which (average) velocity is 
involved. It makes a difference for constrictions and widenings, and therefore one should 
mention the velocity to be used when giving kf-values. 
 
Naturally, we can also give the friction factor in the form of equation (6.28). Check for 
yourself that, for flow through a tube, the relation between the resistance coefficient kf and 
the (more up to date) friction coefficient f is given by: 
 

  𝑘𝑘𝑓𝑓 = 4𝑓𝑓 𝐿𝐿
𝑑𝑑ℎ

       (6.29) 
 

For a complete piping system, consisting of N straight pieces and M other types of 
equipment, it is valid for the total mechanical energy converted to internal energy per mass 
unit, that: 
 

  𝑒𝑒𝑓𝑓 = ∑  4𝑓𝑓𝑖𝑖𝑖𝑖=𝑁𝑁
𝑖𝑖=1

𝐿𝐿𝑖𝑖
(𝑑𝑑ℎ)𝑖𝑖

�1
2
〈v〉2� + ∑  �𝑘𝑘𝑓𝑓�𝑗𝑗

𝑗𝑗=𝑀𝑀
𝑗𝑗=1 �1

2
〈v〉2� (J/kg)  (6.30) 
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 Re  
 
Flow situation 
 

 
50 

 
100 

 
200 

 
400 

 
1000 

 
Turbulent 

Diameter change:*)      0.05 
       
Entering pipe, rounded      0.5 
ditto, not rounded       
       
sudden constriction      0.45(1-m) 
sudden widening      (1/m-1)(1/m-1) 
       
measuring disk 
 

     2.7(1-m)(1-m2) 

Elbows:       
       
180° short      1.7-2.2 
180° long      1.2 
       
90° short      0.7-0.9 
90° half-long 17 7 2.5 1.2 0.85 0.6-0.8 
90° long      0.4-0.6 
90° sharp corner      1.3-1.9 
       
45°      0.3-0.4 
       
T-connection 9 4.8 3.0 2.0 1.4 1.0 
       
Throttle-valves:       
       
Spherical throttle-valve 
open 

28 22 17 14 10 6-10 

ditto, half-open      9.5 
       
Sliding throttle valve open      1.17 
ditto, half-open      4.5 
       
Controlling throttle valve 55 17 9 5.8 3.2 2.0  
ditto, with needle      to 70 
       
Water meter      6-12 
Cyclone      10-20 

  *) Regarding velocity below stream;  m= diameter ratio (<1). 
 

Fig. 6.7.  Overview of kf-values involved with the average in-flow velocity for systems with  
                diameter changes, bends, throttle valves and other fittings. For a number of  
                systems the Re-dependency is given. 
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6.2.3 Friction factors of packed beds 

At the end of this chapter, we will look at the quantification of the friction factor in beds of 
solid particles (so-called packed or fixed beds). These systems are frequently used in the 
physical and chemical technology if a fluid (gas or liquid) has to be brought in contact with 
a (finely distributed) solid. The fluid and solid can undergo both a physical and chemical 
process. One can think of drying and coating as physical processes, while heterogeneously 
catalysed reactions are examples of chemical processes. In this last category of processes, 
one or more components present in the fluid are converted on the surface of the solid 
particles.  
 
Beds with solid particles can roughly be divided into packed beds and fluidised beds. Both 
types of bed consist of a tube with a separator for the fluid. Above the separator is the bed 
with solid particles that are in a resting phase for a packed bed. In a fluid column, however, 
movement of the bed particles occurs because of the bubbles that are present. The system 
would therefore behave like a boiling “liquid” in many regards.  
 
We will limit ourselves to the quantification of the friction factor of packed beds for which 
the following two approaches are possible: 
 
A) The packed bed is regarded as a collection of particles whereby the friction factor is 
described on the basis of the friction factors of the individual particles. 
B) The packed bed is regarded as a collection of “tubes” whereby the friction factor is 
described on the basis of the friction factors of the individual tubes. 
 
We will follow approach B. For the quantification of the friction factor of packed beds, we 
will first define two quantities by which the packed bed can be characterised. These are the 
porosity ε of the packed bed and the specific surface a of the packing material. 
 
- the porosity or volume fraction fluid (void fraction) of the packed bed: 
 

ε = volume between bed particles (m3)     ( - ) (6.31) 
         volume of the bed (m3)   

 

- the specific surface of the bed material: 
 

a = Surface of the particles (m2)                (m-1)     (6.32) 
 Volume of the bed (m3)   

 
According to the equation of Fanning, the following is valid for the pressure drop ∆p over a 
straight tube with (hydraulic) diameter dh and length L: 
 

         (6.33) 
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It will be clear that equation (6.33) is not applicable as it is for the description of the 
pressure drop ∆p over a packed bed, as the hydraulic diameter and the length of the “tubes” 
are basically still unknown. It is valid for the hydraulic diameter dh that: 
 

dh = 4 area of all tubes through which the fluid flows      (6.34) 
       wetted circumference of all tubes   

 
If we multiply the numerator and denominator in (6.34) by the average length of the tubes 
Lb, we get: 
 

dh = 4 streamed through volume of all tubes = 4  ε  
 wetted surface of all tubes  a              (6.35) 

 
In equation (6.33), the pressure drop is expressed in terms of the average velocity <v>. For 
packed beds, however, one preferably uses the superficial velocity v0, which is related to 
<v> as follows: 
 
        (6.36) 
 
The superficial velocity v0 equals the quotient of the volume debit Φv, supplied to the bed 
and the total surface A of the tube in which the bed is located and through which the fluid 
flows (v0=Φv/A). The superficial velocity v0 is actually the average flow velocity of the empty 
tube and is therefore also called the “empty tube velocity”. Combination of (6.35) and (6.36) 
with (6.33) gives the following expression for the pressure drop ∆p: 
 

        (6.37) 

 
where L is substituted by Lb. In equation (6.37), Lb represents the average length of the 
tubes, which is naturally bigger than the length L of the packed bed. In relation to practical 
considerations, the length of the packed bed is taken for Lb (Lb=L), which in fact leads to a 
correction of the friction coefficient (f). As f should be obtained empirically, the relevant 
correction factor can be accommodated in f. Analogous to the flow through a tube, the 
friction coefficient for the packed bed is dependent on the flow regime, which we will now 
consider more closely. 
 
A) Laminar flow: 
 
For laminar flow conditions, f will be inversely proportional to the Re-number: 
 

       (6.38) 

 
Substitution of this proportion relation for f into equation (6.37) then gives the following 
for the pressure drop ∆p in the laminar flow regime: 
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        (6.39) 

 
with Claminar being a proportion constant that should be determined empirically. On the basis 
of analysis of a great number of measurements, it seemed that the value Claminar≈25/6 best 
corresponds with experimental data. 
 
B) Turbulent flow 
 
For turbulent flow conditions, f is independent of the Re-number, so that it is valid for the 
pressure drop ∆p in the turbulent flow regime that: 
 

        (6.40) 

 
with Cturbulent a proportion constant to be determined empirically. Here the value 
Cturbulent≈7/24 corresponds best with experimental data. 
 
The equation that describes the pressure drop of a packed bed in both the laminar and 
turbulent flow regimes, is now simply obtained by adding (6.39) and (6.40) together: 
 

         (6.41) 

 
The resulting equation is called the Ergun equation, which is of great importance for the 
pressure drop calculation for packed beds. In this equation, the specific particle surface a 
can also be expressed in a number of quantities that can be determined experimentally. For 
the situation where the bed consists of spherical particles with a uniform particle diameter 
dp, we will calculate it more closely. In this situation it is valid that: 
 

         (6.42a) 

 
         (6.42b) 
 
with n the number of particles per volume unit (“particle concentration”). Elimination of n 
from (6.42a) and (6.42b) gives the following expression for the specific surface a: 
 

         (6.43) 

 
Substitution of (6.43) into (6.41) gives the following alternative expression for the Ergun 
equation, which gives the pressure drop per length unit. 
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       (6.44) 

 
The first term in equation (6.44) represents the laminar friction factor, which is dominant 
at low flow velocities and/or for small bed particles. If the first term in (6.44) completely 
dominates, the Ergun equation reduces to the Blake-Kozeny equation: 
 

         (6.45) 

 
which is valid in the laminar flow regime, i.e. if (G0dp/η)(1/(1-ε))<10. The quantity G0 is the 
mass flux for the empty tube: G0=v0 with dimension kg/(m2.s). 
 
The second term in equation (6.44) represents the turbulent friction factor, which is 
dominant at high flow velocities and/or for large bed particles. If the second term in (6.44) 
completely dominates, the Ergun equation reduces to the Burke-Plummer equation: 
 

         (6.46) 

 
which is valid in the turbulent flow regime, i.e. if (G0dp/η)(1/(1-ε))>1000. 
 
As stated, the Ergun equation is valid for both the laminar and turbulent flow regimes. The 
Ergun equation can also be written in the following dimensionless form, which is given 
together with the dimensionless Blake-Kozeny and Burke-Plummer in Fig. 6.8.: 
 

       (6.47) 

 
If the Ergun equation is applied for gases, the density ρ should be evaluated at (p0+pL)/2, 
where p0 and pL are the pressures at the entrance and exit of the packed bed, respectively. 
If the pressure drop ∆p=p0-pL is large, one should work with the differential form of (6.44), 
whereby the pressure drop per length is substituted by (-dp/dz), where z is the main flow 
direction through the bed: 
 

      (6.48) 

 
At the same time, the superficial velocity v0 is expressed here in the mass flux G0 and the 
density ρ. 
 
On the basis of the law of conservation of mass, G0 is constant in the steady-state condition 
(and thus independent of z). The density ρ of the gas is (via the equation of state), however, 
a (known) function of the pressure. Substitution of the equation of state into (6.48) then 
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gives a (non-linear) first order differential equation, which describes the pressure as a 
function of z. 
 
 
 

 
 
 
Fig. 6.8.  Representation of the dimensionless form of the Ergun equation (6.47). The 
dimensionless equations of Blake-Kozeny and Burke-Plummer, as well as the experimental 
data, are also given. 
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7 Molecular energy transport 

In physical and chemical engineering often processes occur in which, next to momentum 
transport, heat transport and/or (coupled) mass transport takes place. The heat and 
mass transport on the one hand and momentum transport on the other hand can 
strongly influence one another. For the description and design of chemical engineering 
processes, the rate at which heat and mass transport (possibly in interaction with 
momentum transport) takes place, plays a crucial role. In this and the following chapters 
the transport phenomena involved in heat transfer will be discussed. Also, important 
concepts generally applied in chemical engineering, such as setting up macro- and 
microbalances, comparing transfer resistances and using dimensionless numbers, are 
introduced along the way and are applied.  
 
In this chapter, molecular heat transport in a stagnant object or fluid is studied. First, the 
steady state temperature profiles and the associated heat fluxes (steady conduction) are 
derived for three different geometries: infinite flat plates, cylinders and spheres. 
Subsequently, the theory is extended to instationary conduction in semi-infinite and 
finite objects. In this course, we will derive the equations only for purely one-
dimensional molecular heat transport. Although analytical expressions could be derived 
for specific higher dimensional cases, often engineers resort to an approximation 
introduced by Newman, which is described at the end of the chapter. The chapter 
concludes with an elaboration on internal and external heat transfer resistances. 

7.1 Fourier’s law 

The molecular heat transport is described with Fourier’s law, given by: 
  (7.1) 

Or, in one-dimensional form: 
  (7.2) 

Here,  is the thermal conductivity of the material. For various materials values can be 
found in literature. It is often considered a constant, but in principle it is not: 
• The thermal conductivity of gases and liquids typically depends on the local 
temperature, pressure and composition. 
• Generally, the thermal conductivity is independent of the direction in the 
material in which the conduction takes place. That is, most materials are isotropic. 
However, for some materials, the thermal conductivity is different in different directions. 
Examples include wood or polymers, where the thermal conductivity depends on the 
orientation of the grains in the wood, or the polymer chains. These non-isotropic 
materials are left out of consideration in this course.  
Also, often in literature for composite materials the assumption of a pseudo-
homogeneous medium is made. In such cases a single (lumped) thermal conductivity is 

h Tλ′′Φ = − ∇

h
dT
dx

λ′′Φ = −

λ
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used and the medium, such as for example a packed bed, consisting of particles with a 
fluid (gas or liquid) in the interstitial space between the particles, is described as if it 
were homogeneous. This approach is typically applicable if the inhomogeneity of the 
material is found at a much smaller scale than that at which the conduction process 
takes place and this inhomogeneity is uniformly distributed within the medium. The 
effective thermal conductivity of such a medium depends on the thermal conductivity 
coefficients of the individual phases, the volume fractions of the phases and the 
geometry of the dispersed elements. Although the assumption of a pseudo-
homogeneous medium is quite common, one should always verify the validity of this 
assumption.  

7.2 Stationary conduction 

7.2.1 Stationary conduction in a flat plate 

The first situation that is studied is stationary one-dimensional molecular heat transport 
in a (homogeneous) flat plate with a thickness  (see Figure 1.1). The dimensions of the 
plate in the directions perpendicular to the x-direction are very large compared with the 
thickness of the plate, so that for this example only transport in the x-direction needs to 
be considered. The left side of the plate is kept at a constant temperature , while the 

right side of the plate is kept constant at a lower temperature . As a result of the 

temperature difference there will be a temperature gradient in the plate, so that in 
accordance with Fourier’s law, there will be molecular heat transport through the plate. 
The questions to be answered are: how does the temperature profile look like and what 
is the heat flux through the plate? These questions can be answered by setting up a 
microscopic stationary thermal energy balance and combine this with Fourier’s law for 
the molecular heat flux. 

 

 

d

1T

2 1T T<

  

 

    

  

        

Figure 7.1:  Heat transport by conduction in a flat plate with thickness d 
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For the analysis of this heat transport problem, we formulate a differential thermal 
energy balance over a infinitesimally small control volume,  in which  is the 
cross-sectional area of the plate perpendicular to the x-direction. In words, the balance 
reads: 
 

Accumulation of thermal energy in the control volume per unit of time = 
ingoing amount of thermal energy per unit of time 

– outgoing amount of thermal energy per unit of time 
+ amount of energy produced within the control volume per unit of time 

 
In the stationary situation, there is no heat accumulation and in this problem there is 
also no heat production. The differential heat balance reduces to: 
 

  (7.3) 

 
Dividing by the control volume Adx and taking the limit of dx → 0: 
 

  (7.4) 

 

having used the definition of the (partial) differential. Combining the differential energy 
balance with Fourier’s law yields: 
 

  (7.5) 

 

When the thermal conductivity  is constant, it can be taken out of the differential 
operator. By subsequently dividing by , the equation reduces to: 
 

  (7.6) 

 

From the above equation it can be deducted that for steady conduction in a flat plate 
with constant thermal conductivity, a linear temperature profile results. Integrating 
equation  (7.6) twice with respect to x and subsequently substituting the boundary 
conditions of constant temperatures at both sides of the plate, gives finally the following 

expression for the temperature profile  in the plate:  

 

  (7.7) 

Now that the temperature profile has been derived, the heat flux  is obtained using 

Fourier’s law: 
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  (7.8) 
 

Note that the heat flux for this case is independent on the position with respect to the 
surfaces of the plate. The heat flow  is obtained by multiplication of the heat flux   

with the cross-sectional area A: 
 

  (7.9) 

Heat transfer resistances 

The equation (7.9) can be rewritten in the standard form “driving force = resistance  
flow” as follows: 
 

  (7.10) 
 

This expression for the heat flow is analogous to Ohm’s law. According to Ohm’s law, the 
following applies for the relation between the electrical potential difference , the 
electrical resistance  and the current intensity : 
 

  (7.11) 
 

In this equation  is the specific electrical resistance of the material,  is the thickness 
or the length of the material,  is the area perpendicular to the direction of the 
electrical current and  is the electrical current density. Evidently, the reciprocal 
thermal conductivity  corresponds to the specific electrical resistance . This 
analogy can be used when considering parallel or serial connections of heat transfer 
resistances, because the same rules apply as to Ohmic resistances. By comparing heat 
transfer resistances one can quickly find out which resistances are determining the 
overall heat flux. 
 
     For parallel connections: 

 (7.12) 

    
        For serial connections:  

 (7.13) 

In these equations,  is the total resistance,  is the number of parallel or serial 

resistances and  is the  resistance. 

As an example, the qualitative temperature profile is sketched for stationary heat 
conduction in a composite material in Figure 7.2. The different layers in this composite 
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material each can have a different thermal conductivity  and different thickness . 

Possible heat losses between the layers are ignored. In this situation there is a serial 
connection of three heat transfer resistances, where the total driving force  and the 
heat flow  are related via: 

 
 

 (7.14) 

 
Or: 
 

 
 (7.15) 

 
Use of the correspondence with electrical resistances has allowed us to directly and 
quickly find the overall heat transfer resistance. Alternatively, the heat flow through the 
three layers of the composite material could have been derived independently as a 
function of the both sides of the layers, i.e. T1, T2, T3 and T4. Two of these equations can 
be used to eliminate the variables T2 and T3, which yields after substitution in the 
remaining equation, and after much more work, the above equation. 
 
Question: Which layer in the composite material, for which the temperature profile is 
given in Figure 7.2, has the largest heat transfer resistance?  
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Figure 7.2: Heat conduction in a composite material in which the layers have different thickness and 
thermal conductivity.  
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7.2.2 Stationary conduction in a cylinder 

As a second case, we study stationary conduction in cylindrical coordinates. Consider 
the radial heat transport in the insulation material around a tube (see Figure 7.3). 
Denote the outer radius of the tube with . The cylindrical insulation jacket has a 

uniform thickness , where  is the outer radius of the insulation jacket. The 

temperatures at the inside and the outside of the jacket are  and , respectively, with 

. Due to the temperature difference , there will be a temperature 

gradient in the radial direction, hence molecular heat transport in the radial direction 
will take place (according to Fourier’s law).  
 
 

 
 

 
For the analysis of the heat transport problem, we set up a differential thermal energy 
balance over an infinitesimally small control volume . Again, in this 
problem there is no heat accumulation (steady state) and no heat production, so that 
the differential thermal energy balance reads: 

  (7.16) 

 
which states that the heat flow in the radial direction has to be constant. From this 
equation, the differential form is easily derived by dividing by  and taking the limit 
of : 
 

  (7.17) 

 
According to Fourier’s law, for the heat flux  the following applies: 
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Figure 7.3   Radial heat transport in an insulation jacket around a tube with thickness  2 1R Rδ = −
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  (7.18) 
 

Combination of the differential thermal energy balance (7.17) with Fourier’s law (7.18) 
yields: 

 
 (7.19) 

 
When the thermal conductivity  is constant, it can be taken outside of the differential 
operator and equation (7.19) reduces to: 
 

 
 (7.20) 

 

From this equation it can be seen that the radial temperature profile as a function of the 
radial coordinate in the insulation jacket (for constant ) is not linear for steady 
conduction in a cylindrical material. Solving (7.20) with the appropriate boundary 
conditions, given by 
 
Boundary conditions:   

     

gives an equation for the radial temperature profile   in the insulation jacket (Try 

to derive this equation yourself!): 
 

 (7.21) 

 
For the heat flux  the following applies according to Fourier’s law: 
 

 
  (7.22) 

 

The local heat flow   follows from the product of the heat flux  and the area 

, in which  is the length of the tube: 
 

 
 (7.23) 

 

From equation (7.22) follows that the heat flux in the insulation jacket is inversely 
proportional with the radial coordinate , whereas for a plate the heat flux is constant 
for the stationary situation. This difference is caused by the increasing surface area 
through which heat is transported with increasing radius. However, similar to the case 
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of the flat plate, the heat flow through the isolation mantle is independent on the radial 
position, as can be seen from equation (7.23). When (7.23) is rewritten in the form 
“driving force = resistance  flow”, the following holds for the heat transfer resistance 
of the insulation jacket: 

 
 (7.24) 

 
Using this equation for the heat resistances in cylindrical geometries, we can quickly 
estimate the overall heat loss from a cylindrical tube when it is insulated with a 
composite material. 
 

7.2.3 Stationary conduction around a sphere 

The last case of stationary conduction discussed here concerns stationary conduction of 
energy from a sphere with radius  to a surrounding stagnant medium. The 
temperature of the sphere is uniform and constant at  while the temperature of the 

stagnant medium at large distance of the sphere is , (see Figure 7.4). . The 

strategy is again to solve the temperature profile and subsequently apply Fourier’s law 
to find the heat flow away from the sphere.  
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Figure 7.4: Heat transfer from a sphere with radius  and temperature  to a stagnant 
medium with temperature  at very large distance from the sphere. 

R 1T

T∞



Molecular energy transport 

97 

For the analysis of this heat transport problem a stationary differential thermal energy 
balance over a spherical layer of air surrounding the sphere with thickness  and 
control volume  is formulated: 

  (7.25) 

 
Dividing by the control volume and taking the limit , equation (7.25) reduces to 
the following differential equation after substitution of Fourier’s law: 
 

 
 (7.26) 

 
For a constant thermal conductivity , equation (7.26) reduces to a 2nd order 
differential equation: 
 

 
 (7.27) 

 
Integration of equation (7.27) with the appropriate boundary conditions gives the 
following expression for the radial temperature profile in the stagnant medium around 
the sphere: 
 

 
 (7.28) 

 
According to Fourier’s law, the heat flux  is given by: 

 
  (7.29) 

 
The local heat flow  follows from the product of the heat flux  and the area 

: 
 

  (7.30) 
 
Analogous to the situation with the insulation jacket, again the heat flux is not constant, 
while the heat flow is. The physical explanation for this is the same as for the insulation 
jacket, but in this case the area increases quadratically with the radial coordinate . 
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7.2.4 Newton’s law of cooling and the Nusselt number 

Newton formulated a “Law of Cooling”, to describe the rate of cooling of a body by 
stating that the heat flow  is proportional to the heat exchange area  and the 

temperature difference between the outer surface of the body and the environment 

. The proportionality constant is called the (external) heat transfer coefficient 

 . This purely phenomenological quantity accounts for all (unknown) 
information about the heat transfer process. According to Newton’s law of cooling: 
 

  (7.31) 

 

Nusselt correlation for stationary conduction around a sphere in a stagnant medium 

For the case of heat transfer from a sphere to a surrounding stagnant medium, we can 
derive – by comparing equations (7.30) and (7.31) – for the heat transfer coefficient α: 
 

  (7.32) 

 
Generally (for example for the case of a flow past a sphere) the heat transfer coefficient 
needs to be determined empirically. Here one uses correlations where the heat transfer 
coefficient α is represented in dimensionless form using the Nusselt number Nu, defined 
as: 
 

  (7.33) 

 
where L represents a characteristic length. In fact, the Nusselt number is the ratio of two 
heat transfer resistances: 
 

  (7.34) 

 
For example, a Nusselt number of 5 indicates that the heat transfer for the case under 
consideration is 5 times faster compared to heat conduction through a flat plate of 
characteristic thickness d. 
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For the case of heat transfer around a sphere, the characteristic length is the diameter 
of the sphere, so that the Nusselt-correlation for heat transfer around a sphere in a 
stagnant medium is: 
 

 

 (7.35) 

 
Note that λ is the thermal conductivity of the surrounding medium and not the thermal 
conductivity of the sphere, since we are describing the heat transfer in the surrounding 
medium.  
 

7.2.5 Stationary conduction: general energy balance  

Summarizing the results of this section, the general differential energy balance for a 
stagnant medium with one-directional molecular heat transport in the steady state is 
given by: 
 

 
 (7.36) 

 
Here denotes the volumetric heat production . The value of depends on 

the coordinate system employed, i.e. n = 0 for a Cartesian, n = 1 for a cylindrical (with 
transport in the radial direction) and n = 2 for spherical coordinate systems. The 
geometric scale factors rn corrects for varying surface area as a function of the radial 
coordinate. 
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7.3 Instationary conduction 

Now, we will consider unsteady molecular heat transport in one-dimension. First, we 
will derive Fourier’s differential equation. The solution of this partial differential 
equation2 will be given for two different, often occurring, geometries, namely heat 
penetration in a “semi-infinite” body and heat penetration in a finite body. 
 
1. Semi-infinite heat penetration:  In this case, the time span in which the heat 
transport occurs is so short that the heat penetration occurring at one side of the body 
is not or barely noticeable at the other side of the body. For the mathematical 
description we can then assume one-sided penetration in a “semi-infinite” body, while 
the body in fact has a finite size in the direction of the heat transport. 
 
2. Finite heat penetration: In this case, the time span in which the heat penetration 
occurs is large enough for the heat penetration to be felt everywhere in the body. In this 
situation we can no longer assume that the body is “semi-infinite”, since the body is 
heated everywhere inside the body. 
 
Note that the differences between these two cases is only related to differences in the 
boundary conditions, while for both cases the unsteady thermal energy balance 
(Fourier’s differential equation) is the exactly same. For the sake of simplicity, in this 
course we will only consider the flat plate geometry (see Figure 7.1) when deriving the 
equations. For other geometries, solutions have been formulated, which are given here 
in graphical form. However, very often (at least in many engineering cases) the boundary 
curvature can be neglected and the solutions for a flat plate geometry can be used as a 
good approximation. In the following discussion, for simplicity in the discussion, we will 
assume that  (that is, the body is heated), however, the results are equally valid 

for  (cooling of the body). 

 

7.3.1 Derivation of Fourier’s differential equation for a flat plate 

The starting point for the derivation of Fourier’s differential equation is the differential 
thermal energy balance, which is formulated in words in section 7.2.1. In the case of 
instationary heat conduction, the amount of heat in the control volume  
changes in time. The instationary heat balance reads: 
 

  (7.37) 

 
 

2  For additional information on the analytical solution techniques for the (heat) diffusion equation 
one is referred to the excellent book named “Conduction of Heat in Solids” by H.S. Carslaw and J.C. 
Jaeger 
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The left side of equation (7.37) states the change of the amount of heat in the control 
volume  occurring in a period of time , while the right side of equation 
(7.39) shows the net (“in” – “out”) heat flow by conduction in the same period of time 

. Check for yourself that the dimension of this balance is . 
 
Dividing by the control volume and the time duration (i.e. ) and taking the limit 
of dx → 0  and dt → 0, yields 
 
 

 
 (7.38) 

 
  (7.39) 

 
Substituting Fourier’s law for the heat flux, the following partial differential equation is 
obtained, which describes the temperature in the plate as a function of the x-coordinate 
and time : 
 

 

 
(7.40) 

 
When the thermal conductivity  is constant, it can be taken outside of the differential 
operator and equation (7.40) reduces to Fourier’s differential equation:  
 

 

 
(7.41) 

 

where , the thermal diffusivity of the material with dimension  has been 
introduced: 
 

 

 
(7.42) 

 
To solve the temperature profile described by equation (7.41), one initial condition and 
two boundary conditions need to be specified. The initial condition describes the 
temperature distribution at a certain time, e.g. in the case of a uniform initial 
temperature: 
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The two boundary conditions describe the temperature and/or temperature gradient at 
the two boundaries of the body, e.g.: 
 

   

 
 

 

 
In other words, at  the temperature is fixed at . At  the temperature 

gradient (and so the heat flux) is fixed at . It is evident that the solution of equation 
(7.41) will depend on the boundary conditions that are applied. For example, it would 

be possible to impose a heat flux on the boundary by setting the derivative  on the 

wall to a non-zero value, according to Fourier’s law. Fourier’s differential equation is now 
solved for two different cases, namely i) heat penetration in a semi-infinite object and 
ii) heat penetration in a finite object. 
 

7.3.2 Heat penetration in a semi-infinite body (Penetration theory) 

Derivation of the temperature profile 

Fourier’s differential equation will first be solved for a body of which the initial 
temperature is  throughout. At time , the temperature at the interface  is 

suddenly increased to a constant temperature  (see Figure 7.5). As a consequence 

of this (stepwise) applied temperature change at , heat will penetrate the body 
from . 
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Figure 7.5   Heat penetration in a “semi-infinite” body.  is the initial temperature,  

 is the applied temperature at  
0T

1T 0x =



Molecular energy transport 

103 

The initial and boundary conditions for the solution of Fourier’s differential equation for 
this problem are: 
 

  (7.43) 
  (7.44) 
  (7.45) 

 
Equation (7.39) can be solved with these conditions using the method of combination 
of independent variables and the solution is given by: 
 

 

 
(7.46) 

 
In dimensionless form this is: 
 

 
 (7.47) 

 

where the dimensionless temperature  is introduced,  which represents the 

present (at time ) and local (at position ) relative driving force: 
 

 
In the solution, ‘erf’ represents the so-called error function, which is defined as: 
 

 

 
(7.49) 

 
The error function is of great importance to physics. Since there is no analytical solution 

for this integral, tables are available in which the value of  is given as a function 

of  (see e.g. Table 7.1). For the sake of clarity, the error function is also graphically 
represented in Figure 7.6. The resulting (qualitative) temperature profiles were already 
shown in Figure 7.5. 
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Table 7.1: Values for the error function  

    

0.00 0.0000 1.10 0.8802 
0.05 0.0564 1.20 0.9103 
0.10 0.1125 1.30 0.9340 
0.15 0.1680 1.40 0.9523 
0.20 0.2227 1.50 0.9661 
0.25 0.2763 1.60 0.9763 
0.30 0.3286 1.70 0.9838 
0.35 0.3794 1.80 0.9890 
0.40 0.4284 1.90 0.9928 
0.45 0.4755 2.00 0.9953 
0.50 0.5205 2.10 0.9976 
0.55 0.5633 2.20 0.9981 
0.60 0.6039 2.30 0.9989 
0.65 0.6420 2.40 0.9993 
0.70 0.6778 2.50 0.9996 
0.75 0.7112 2.60 0.9998 
0.80 0.7421 2.70 0.9999 
0.85 0.7707 2.80 0.9999 
0.90 0.7969 2.90 0.9999 
0.95 0.8209 3.00 0.9999 
1.00 0.8427   
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Figure 7.6   The error function  as a function of  ( )erf z z
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Present and time-averaged heat flux 

Often one is not so much interested in the temperature profile, but rather in the amount 
of energy transferred through the boundary x = 0 into the object. The expression for the 

present heat flux at , , can be derived with Fourier’s law, with the following 

result: 
 

 
 (7.50) 

 
From equation (7.50) follows that the heat flux at  is positive, which is expected 

because of the assumption . With use of the definition of the thermal diffusivity 

(equation (7.42)), equation (7.50) can also be written as: 
 

 
 (7.51) 

 
Note that the heat flux decreases with the square-root of time, related to the decreasing 
temperature gradients at the boundary x = 0 due to the heating of the object. 
 
Next to the present heat flux  often the (time-)averaged heat flux  is 

relevant, for example for calculating the total amount of heat transferred. It is measured 
over a certain time  (measured from ): 

 
 

 (7.52) 

 
Elaborating the above integral yields 
 

 
 (7.53) 

 
expressing that the time-averaged heat flux is exactly equal to twice the instantaneous 
heat flux at the end of the period t = te. 
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Present and time-averaged heat transfer coefficients 

Recall Newton’s law of cooling and the definition of the heat transfer coefficient , 
defined as the heat flux  per unit of driving force : 

 
 

 (7.54) 

 
In general, for the driving force , the difference between the applied temperature  

and the volume average temperature of the body  is taken. When the penetration 

theory can be applied (i.e. conditions (7.59) or (7.60) are fulfilled), a good approximation 

is to assume that the average temperature of the body  is still approximately equal 

to , which means that the driving force  is equal to . When the equations 

(7.52) and (7.53) are divided by , we get the following expressions for the 

present and time averaged heat transfer coefficients, respectively: 
 

 

 
(7.55) 

 

 
(7.56) 

 

Note that the time average heat transfer coefficient , which occurs in the time 

interval  is exactly twice as large as the present heat transfer coefficient at . 

Check for yourself that the heat transfer coefficients  and  have the dimension 

. 

 

Penetration depth 

One needs a quick estimate whether the penetration theory can be applied or not. From 
equation (7.50) it follows directly that the tangent line to the temperature profile at 

will, independently of the exact value of the (non-zero) temperature difference of 

, cut off a distance  at the x-axis given by: 
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In Figure 7.7, this result is represented in dimensionless form (also see Figure 7.5). From 
this figure and Table 7.1 we can read that for , which corresponds to , 

the actual relative driving force  amounts to about . For , the 

relative driving force is about , at . That is, a change in relative driving force 

of only  is to be found beyond . This means that the principal 

temperature change is situated in a layer of thickness . In other words, the heat 

penetration depth, , is now defined as: 

 
 

 (7.58) 

 
From this equation follows that the heat penetration depth  increases with the root 

of time . The heat penetration depth plays an important role in determining the validity 
of application of the penetration theory for the description of instationary molecular 
heat transport, analogous to the momentum penetration depth. A criterion for checking 
the validity of the penetration theory is described in the next paragraph. 
 

Validity of the penetration theory and the Fourier number 

When the heat penetration depth  is smaller than or equal to the characteristic size 

 of the body, the penetration theory can be applied: 
 

 

 
(7.59) 

 
For one-sided heat penetration the characteristic length L equals the total thickness  
of the material, while in the case of two-sided heat penetration (as sketched in Figure 
7.8) the characteristic length  equals half of the thickness, , of the material. Note 
that for a heat penetration in an (infinitely long) cylinder (in the radial direction) and in 
a sphere, the characteristic length L equals the radius R (assuming that ). 

Referring to Figure 7.8, the results of the penetration theory is applicable for t<t2. For 
t>t2  the temperature at the centre of the object starts to increase, so that boundary 
condition (7.45) and hence the solutions of the penetration theory are no longer 
applicable.  
 
Equivalently, the condition can also be rewritten in the dimensionless form: 
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Here,  is the (dimensionless) Fourier number. This number represents the ratio of 

process time  and the characteristic process time  for heat conduction. For a 
cylinder and a sphere the penetration theory can be applied with good accuracy for Fo 
numbers smaller than 0.04 and 0.018 respectively (due to curvature effects). 
 
The advantage of using the dimensionless time  is that the temperature profiles put 
in a dimensionless form for different objects (for which, in this case, the penetration 
theory applies) corresponds for the same dimensionless time . This allows deriving 
general correlations for heat transfer.  
 
The following Nusselt relations, for example, are derived by rewriting the derived heat 
transfer relations for the penetration theory (equations (7.55) and (7.56)) in 
dimensionless form: 
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(7.62) 

 
As mentioned before, the Nusselt number represents the ratio of two heat transfer 
resistances. The Nusselt number in equation (7.61) gives the ratio of the stationary 

conduction resistance  and the instationary conduction resistance . The 

Nusselt number is also used to characterize convective heat transport, as we will see in 
the next chapter.  
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Figure 7.7   Meaning of  defined in equation (7.57)  δ∗

Figure 7.8   Two-sided heat penetration in a flat plate with initial temperature  and applied 

temperature  at the two walls ( and ).  ( ) 
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7.3.3 Heat penetration in a finite body (Fourier solution) 

In this section, Fourier’s differential equation will be solved for the situation where also 
the core of the body is heated (i.e. , referring to Figure 7.8). We will assume two-

sided heat penetration in a flat body, similar to the geometry depicted in Figure 7.8. The 
initial temperature of the body is again uniform and equal to . At time  the 

temperature of the wall of the body (at  and ) is instantaneously raised 
to . Note that in this case  is at the center of the body, where the 

temperature gradient is zero (because of symmetry), i.e. 
 

 
 (7.63) 

 

This implies that there is no conduction of heat through the centre of the body. Thus, 
the equations derived below are also applicable for the case of one-sided penetration 
into a finite flat plate where the back-side of the plate is kept at adiabatic conditions (i.e. 
no heat losses). 
 

Short derivation using dimensionless numbers 

Fourier’s differential equation (7.41) and the initial condition (7.43) remain valid (but in 
this case: ). The boundary conditions (7.44) and (7.45) are replaced by the 
following (symmetrical) boundary conditions: 
 

  (7.64) 
  (7.65) 

 
In order to solve equation (7.41) with initial condition (7.43) and boundary conditions 
(7.64) and (7.65) it is beneficial to introduce the following dimensionless variables: 
 
Dimensionless length :  

 
 

(7.66) 

Dimensionless time : 
 

 
(7.67) 

 

Dimensionless temperature : 
 

 

 
(7.68) 
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With these dimensionless variables, Fourier’s differential equation is rewritten in 
dimensionless form as: 

 

 
(7.69) 

 
With the following corresponding initial condition and boundary conditions: 
 

  (7.70) 
  (7.71) 
  (7.72) 

 
The solution of (7.69) with the initial and boundary conditions (7.70), (7.71), (7.72) can 
be determined with the method of “separation of variables” and the solution is given in 
the form of a Fourier series: 
 

 
 (7.73) 

 
With equation (7.73) all the important variables for the heat penetration process can be 
derived and the results are summarized in Table 7.2. 
 

Graphical representation of the Fourier solutions for heat penetration in a finite object 

For the series shown above, there are graphs available in which the average 
(dimensionless) temperature , the (dimensionless) heart temperature  or the 

(present) heat flux through the wall  are plotted as a function of the dimensionless 

time . In Figure 7.9, an example of such a graph is shown. In this figure,  and  

are plotted as a function of the dimensionless time . Note that in Figure 7.9, the 
vertical axis is logarithmic. In this figure also the result for an infinitely long cylinder (with 
radius ) and a sphere (with radius ) are shown. In literature, graphs are also available 
for the present and time-averaged heat fluxes. The most important aspects of the 
solutions depicted in Figure 7.9 are discussed in Table 7.3 
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Table 7.2 Fourier solutions for the heat penetration process in a finite object 

The average 
(dimensionless) 

temperature   

(term-wise integration  
to ): 

 

 (7.74) 

 
The (dimensionless) 
temperature in the 

centre of the body  
  

(7.75) 

The present heat flux 

through the wall  

(term-wise 
differentiation to ) 

: 

 

(7.76) 

: 

 
(7.77) 

The average heat flux through the left wall  and through the right wall  can be 

derived from equations (7.76) and (7.77), respectively, analogous to the derivation of the expression 

for . Note that, as one would expect, the (present) heat flux at  is positive (i.e. directed in 

the positive x-direction), while the heat flux at  is negative (i.e. directed in the negative x-
direction). 

 
 

 
The solutions provided by the Fourier series solution for penetration in a finite body 
basically also include the solution for the limiting case described by penetration theory. 
However, evaluating the Fourier series, is computationally more expensive, whereas the 
penetration theory within its region of validity can be readily applied to obtain derived 
quantities such as the time-averaged heat flux. Additionally, the results provided by 
penetration theory lend themselves better for interpretation. Thus, when the 
penetration theory is valid, those results should be used. 
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Figure 7.9: The dimensionless temperatures  and  as a function of  for one-dimensional instationary heat 

      transport in a sphere, an infinitely long cylinder and an infinitely stretched flat plate. 
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Table 7.3 Important observations for instationary heat conduction 

Observation Interpretation 

 (7.78) 

 
This implies that the sphere heats the quickest, 
followed by the infinitely long cylinder and the 
infinitely stretched flat plate. This behavior is caused 
by the fact that the sphere has the highest ratio of 
area  (through which heat is delivered) to volume 

 (which is heated). 

 
 

For all geometries and 

all values of  : 

 

 
(7.79) 

 

This implies that the average driving force  is 

smaller than the driving force in the centre of the 

body, .  

This is to be expected, because the instantaneous 

increase in temperature of the surface (from  to 

) is noticeable latest in the centre of the body. 

 
 

For large values of ,  for a flat 

plate approaches on the logarithmic 
scale a straight line according to: 
 

 

 
 
 
 
 
(7.80) 

 
Because of the exponential term, for sufficiently 

large values of , the first term of the Fourier 

series (that is, for ) dominates. For the 

temperature in the center of the body  a similar 

situation occurs. 
 
Please note that in the graph not the natural 

logarithm but instead the  is used. 
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7.3.4 Multi-dimensional transport (Newman’s rule) 

Strictly speaking, the solutions illustrated in Figure 7.9 are only valid for purely one-
dimensional heat transport. In practice, however, often systems are investigated where 
heat transport takes place in more than one direction simultaneously. 
 
For finite systems, we can use the solutions in Figure 7.9 (in good approximation) by 
using Newman’s rules. The basic principle of Newman’s rule is, that the N-dimensional 
heat conduction problem is split into N one-dimensional heat conduction problems. In 
order to determine the value of  or  for a certain time , the following approach is 

used: 
 
1. Determine per coordinate direction the value of the Fourier number and read 
the values of  or  from Figure 7.9. 

 
2. The value of  or  for the N-dimensional problem follows via multiplication 

of the N separately determined values of  or . 

 
These rules are summarized in Figure 7.10. The subscript “ ” (with  for 
rectangular shapes and  for finite cylindrical shapes) stands for the resulting  

value if only the heat transport in the s-direction is considered. It is clear that  if 

there is no heat transport in the s-direction, as e.g. for a finite cylinder this situation 
arises when e.g. the jacket of the cylinder is perfectly insulated (‘adiabatic wall’), in 
which case . 
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Figure 7.10   Newman’s rules for the description of simultaneous multi-dimensional heat transport 
in the x-, y-, z-direction for a finite rectangular body and the r-, z-direction for a finite cylinder. 
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Example using Newman’s rules 

Exercise: A can of tomato-sauce (with height , radius  and 
uniform initial temperature ), is suddenly (at ) placed in the kitchen 

sink while water is flowing through (with a bulk temperature ). The water flows 

in such a manner that the temperature of the surface of the can is always equal to the 
bulk temperature of the water. The heat transfer resistance of the metal can be 
neglected. Note that in this example , i.e. the can is cooled down. What is the 

temperature in the centre of the can after 2000 s? 
 
Physical data:   

thermal conductivity of the tomato-sauce:    

 volumetric heat capacity of the tomato-sauce:
 

. 

 
Solution: In this situation, both radial and axial heat transport are significant and need 
to be taken into account. For the radial transport,  is a symmetry-line, while for the 
axial transport,  is the symmetry-plane (see Figure 7.11). This means that the 
characteristic length to be used in the Fourier number for the radial and axial heat 
transport are equal to  and , respectively. 

 
  
 

2 0.1 mL = 0.05 mR =

0 40 CT = ° 0 st =

1 5 CT = °

1 0T T<

( )0.5 W/ m°Cλ =

( )6 31.0 10  J/ m °CpCρ = ⋅

0r =
0z =

R L

  

  

  

  

  

  

Figure 7.11   Characteristic distances for the two-dimensional heat transport 
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First, the Fourier number for the radial direction is calculated, using  

: 

 
 (7.81) 

 
Now, using this Fourier number, from Figure 7.9,  can be determined (taking the line 

for a cylinder): 
  (7.82) 

 
Calculation of the Fourier number for axial heat transport: 
 

 
 (7.83) 

 
With Figure 7.9 now  for the axial direction can be determined (taking the line for a 

plate): 
 

  (7.84) 

 

The -value for the centre of the can  follows from Newman’s rules: 
 

  (7.85) 
 

The temperature in the centre of the can may now be calculated using (7.68):  
 

7.3.5 External heat transfer limitation 

For the discussion of instationary molecular heat transport, it has been assumed that at 
the surface of the body, there is a constant imposed temperature . Referring to the 

above example, it was assumed that energy from the outside wall of the can could be 
transferred infinitely fast towards the bulk of the flowing water, i.e. the resistance to 
heat transport is situated fully inside the tomato-sauce in the can (neglecting the heat 
resistance of the wall of the can). Another limiting case presents itself when the 
resistance to heat transport lies fully outside of the can. In this situation, there are no 
temperature differences within the body and there is one uniform body temperature T. 
  
This limiting case will now be analyzed for an arbitrary body with a heat-exchanging area 

 and volume , which is exchanging heat with the environment. It is assumed that the 
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volumetric heat capacity of the body  is constant. For the description of the external 

heat transfer process the already introduced Newton’s law of cooling is used. The 
instationary thermal energy balance for a body with heat-exchanging area  and 
volume  reads: 
 

  (7.86) 

 
Integration of equation (7.86) with boundary condition  gives:  

 
 

 (7.87) 

 
The ratios of heat-exchanging area  to volume  for different geometries are given in 
Table 7.4. 
 
 
Table 7.4 Ratio of heat-exchanging area to volume (A/V) for different geometries 

Geometry  

 
Two sided heat penetration in infinitely stretched  
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8 Energy transport by forced convection 

In the previous chapter we focused on the analysis of stationary and instationary molecular heat 
transport. We assumed that the heat transport took place in stagnant media, i.e. media in which 
convective (heat-) transport does not play a role. However, we often deal with flowing media 
where there is heat exchange with a fixed system wall, caused by a temperature difference 
between the wall and the flowing medium. In this chapter we will restrict ourselves to heat 
transport by forced convection. Heat transport by free convection will be treated in the next 
chapter. 
 
In this chapter we will consider two types of geometries: i) forced convective heat transport in 
tubes, as for example encountered in heat exchangers, and ii) forced convective heat transport 
in flows past objects, as for example relevant to describe the heat exchange between a catalytic 
particle and the surrounding reaction mixture. First, the general problem is described and the 
heat transfer coefficient and mixing cup temperature are defined for heat transfer to a fluid 
flowing through a tube. 
 

8.1 Newton’s cooling law applied to forced convection 

We would like to be able to predict the amount of energy per unit of time exchanged between 
a flowing fluid and a wall or an object in the flow. Here we will restrict ourselves to the case 
where the wall or object has a constant uniform temperature. For ease of discussion, we will 
again assume that the fluid is heated, but the results are also applicable for the case the fluid is 
cooled. Consider now the case shown in Figure 8.1, which depicts a control volume, showing 
thermal energy entering and leaving the control volume by convective transport and heat 
exchange with the wall. 
 

 

 
 

  

  

  

  

  

Figure 8.1   A system with ingoing  and outgoing  heat flows in which    

is transferred from the wall (with temperature ) to the flowing medium (average temperature: ). 
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Applying Newton’s law of cooling, the amount of thermal energy exchanged between the wall 
and the fluid per unit time is given by 

  (8.1) 

 
where A denotes the heat exchanging area, Tw the wall temperature and  the average 
temperature of the flowing fluid. In this equation the heat transfer coefficient α has been 
defined, which represents the amount of heat exchanged per unit of time, per unit of heat-
exchanging area and per unit of average driving force. Often one uses dimensionless heat 
transfer coefficients in the form of the already introduced Nusselt number: 
 

 

 (8.2) 

where L is a characteristic length of the considered system. 
 
In the definition of the heat transfer coefficient, the average driving force is the difference 

between the (constant) wall temperature and the average temperature  of the flowing fluid. 

Taking into account that there can be radial profiles of the temperature and axial velocity, the 
average temperature we are after, is the temperature of the fluid that we would measure when 
we would collect the fluid in a cup and stir the fluid ideally (without any heat losses). This is 
referred to as the ‘flow-averaged’ or ‘mixing cup temperature’, for flow through a cylindrical 
tube defined as: 

 

 (8.3) 

 

With the help of an example, we will show the importance of heat transfer coefficients to 
quantify heat transfer processes. Often we want to calculate the flow-averaged outlet 

temperature of a fluid, when knowing the inlet temperature , volumetric flow rate Φv and 

heat exchanging area A (see also Figure 8.1). If the fluid is ideally mixed within the vessel, the 

flow-averaged outlet temperature  can be found by setting up a macroscopic thermal 

energy balance (assuming constant volumetric heat capacity ρCp): 
 

 
 (8.4) 

 

where the convective energy flows are given by 
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Thus, the mixing-cup outlet temperature can be calculated, once quantitative information on 

the average heat transfer coefficient  is available. The heat transfer coefficient generally 

depends on  
• The surface properties of the heat exchanging area; 
• The physical properties of the flowing medium; 
• The hydrodynamics of the flow (laminar or turbulent). 
 
For certain cases, analytical equations can be derived for the heat transfer coefficient, while in 
most cases we have to resort to semi-empirical correlations. These correlations (typically in the 
form of dimensionless Nusselt numbers) and the necessary background will be discussed in the 
next sections. 
 
However, looking back at the previous example, the driving force for the heat exchange is the 
temperature difference between the wall and flowing fluid. If the fluid is ideally mixed, the bulk 
temperature of the flowing fluid equals the mixing-cup temperature of the outgoing fluid, i.e. 

and a macroscopic energy balance suffices. However, in case of plug flow of a 

fluidum through a tube, the flow-averaged bulk temperature of the fluid is changing along the 
axial coordinate of the tube, thus also changing the local driving force for heat exchange with 
the wall. In this case we need to set up a differential thermal energy balance (assuming a 
cylindrical tube with diameter D):  
 

  (8.7) 

 
Dividing by dz and taking the limit of dz → 0, we cast the above difference equation into a 
differential equation: 

 
 (8.8) 

 
Note that the heat transfer coefficient can in principle vary along the axial coordinate. With the 

boundary condition  at z = 0, this equation can be integrated using the method of 

separation of variables: 
 

 
 (8.9) 

which yields: 
 

 

 (8.10) 
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Here  denotes the length-averaged heat transfer coefficient. Once 

information on the (average) heat transfer coefficient is available, the mixing-cup outlet 
temperature can be calculated. In the next sections Nusselt correlations for laminar and 
turbulent flow through tubes and for flow past objects will be discussed (assuming a constant 
wall temperature or a constant surface temperature of the object).  
 

8.2 Convective heat transport through tubes 

8.2.1 Laminar incompressible flow through tubes 

Derivation of the thermal energy balance 

In this section we will consider laminar convective heat transport through a cylindrical tube with 
only convection in the axial direction (i.e. fully developed laminar flow). First, the general 
microbalance for thermal energy will be derived, where we will take the following into account: 
 
• Instationary heat transport 
• Convective heat transport in the axial direction only 
• Molecular heat transport in the radial and axial direction 
• Heat production   

 
The differential balance will be set up using cylindrical coordinates assuming rotational 
(azimuthal) symmetry. The control volume is a ‘napkin ring’ with volume  (see 
Figure 8.2). 
 
In words, the microbalance of thermal energy reads: 
 

Accumulation of thermal energy in the control volume per unit of time = 
ingoing amount of thermal energy by convection and conduction per unit of time 

– outgoing amount of thermal energy by convection and conduction per unit of time 
+ heat production in the control volume per unit of time 

 
In Figure 8.2, the in- and outgoing convective and conductive heat flows have been indicated. 
Thus, the differential thermal energy balance is given by: 
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Equation (8.11) is divided by the control volume  and then in the limit of  
and  the following partial differential equation is obtained: 
 

 
 (8.12) 

 
The left hand side of equation (8.12) represents the increase in the amount of thermal energy 
per unit of volume and time. The first term on the right hand side represents the net increase 
of heat per unit of volume and time resulting from axial convection, and the second and third 
term represent the net conductive radial and axial heat transport, respectively, per unit of 

volume and time,  represents the volumetric heat production with units .  

 
This general equation is now further simplified by assuming the following: 
• The system is stationary 
• The contribution by axial conduction is negligible in comparison with axial convection 
• The thermal conductivity is constant 
• The axial velocity is independent of the axial coordinate (i.e. fully developed flow) 
• There is no internal heat production 
 
The simplified thermal energy microbalance then reads: 
 

  

 

(8.13) 
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Figure 8.2   Forced convective heat transport in a round tube. The different transport terms  
in the microbalance of heat have been indicated. 
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To solve equation (8.13) we need: 
• an expression for the radial velocity profile ; 

• one boundary condition which describes the radial temperature distribution at the  
beginning of the tube (at z = 0); 

• two boundary conditions which (for z > 0) describe the temperature and/or radial  
gradient of the temperature at r = 0 and/or r = R. 

 
Here, the following boundary conditions are considered: 
 

  (8.14) 
 

 
(8.15) 

  (8.16) 
 

where L is the length of the tube. Note that T0 denotes the uniform inlet temperature and T1 
denotes the constant imposed wall temperature. With respect to the expression for the radial 

velocity profile  for laminar flow we will distinguish the following two limiting cases: 
 

• Uniform velocity profile (Plug flow): 
 

 
(8.17) 

 

• Parabolic velocity profile (Hagen-Poiseuille flow): 
 

 

 

(8.18) 

where  is the average flow velocity in the tube. Please note that the plug flow case here 

refers to the case of laminar flow with a uniform velocity profile, such as for example 
encountered in the case of a liquid jet flowing downwards through a gas, not to be confused 
with turbulent plug flow.  
 

The Greatz number 

To solve equation (8.13) with boundary conditions (8.14), (8.15) and (8.16), we introduce the 
following dimensionless variables: 
 

• Dimensionless radial coordinate : 
 

 
(8.19) 

Note that the tube diameter instead of the tube radius is selected as characteristic length for 
the radial direction! This is the convention for tube flow. 
 
• Dimensionless axial coordinate :  
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• Dimensionless temperature : 

 

 

(8.21) 

 

When the dimensionless variables are introduced in equation (8.13), the result is shown in 
equation (8.22): 
 

 

 

(8.22) 

 
where the dimensionless Graetz number, , appears, which is defined as: 
 

 

 

(8.23) 

 

The Graetz number represents the ratio between the rate of heat transport as a result of radial 
conduction and the heat transport as a result of axial convection.  
 
The boundary conditions, in dimensionless form, are given by: 
 

  (8.24) 
 

 
(8.25) 

  (8.26) 
 
with the dimensionless velocity profiles for laminar uniform and parabolic velocity profile, resp.: 
 
• Uniform velocity profile (plug flow): 

 

                     
 (8.27) 

 
• Parabolic velocity profile (Hagen-Poiseuille flow): 

 
 (8.28) 

The solution of equation (8.22) with boundary conditions (8.24), (8.25) and (8.26) can be 
obtained analytically for laminar flow with a uniform and a parabolic velocity profile and gives 
the dimensionless temperature  as a function of ,  and the Graetz number : 

. With this dimensionless temperature profile we can derive the following 

important quantities: 
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• Mixing cup dimensionless temperature at the outlet : 

 

 (8.29) 

which is simply the dimensionless form of equation (8.3). 
 
• Local dimensionless heat transfer coefficient Nu: 
 

 
 (8.30) 

  
which is easily understood when recalling the definition of the heat transfer coefficient: 

 

 
(8.31) 

 
Note that in the definition of the Nu number for flow through tubes, the tube diameter has 
been chosen as the characteristic length. 
 
The important result of the above derivation is that for laminar flow the dimensionless mixing 

cup temperature  is only a function of the Gz number! Thus, laminar flow of two different 

fluids with different physical properties flowing through a round tube with different diameters 
will actually achieve the same dimensionless mixing cup temperature if they the cases have the 
same Gz number.  
 
Secondly, it can be easily seen from equation (8.30) that the Nu number, i.e. the dimensionless 
heat transfer coefficient, for laminar flow depends on the axial coordinate. Therefore, a local Gz 
number is defined, where the length L is replaced with local axial coordinate z. 
 

 
 (8.32) 

 
Next, the solutions of equation (8.22) for the two different velocity profiles will be examined.  
In Figure 8.3 the local  value is plotted as a function of the local number  for both a 
uniform and a parabolic velocity profile, and in Figure 8.4 the dimensionless flow average 

temperature  is plotted as a function of , again for both velocity profiles.  Note that  

is solely dependent on the overall Graetz number , while the Nusselt number also 
depends on the local Graetz number , i.e. the (dimensionless) axial position.   
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Two limiting situations are distinguished: 
 

1. Thermally developing flow: In this region, the local Nusselt number is a function of  
 

2. Thermally developed flow: In this region, the local Nusselt number is constant. 
 
 

 
 
 

Gzφ

  

      

  

Figure 8.3   The local value of the Nusselt number as a function of the local Graetz number defined by equation  
(8.32) for a uniform and parabolic velocity profile (both laminar flow) in a cylindrical tube 
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uniform velocity profile 

parabolic velocity profile 

Figure 8.4   The dimensionless flow average temperature  as a function of the Graetz number   

for a uniform and parabolic velocity profile (both laminar flow) in a cylindrical tube 
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Uniform velocity profile (laminar plug flow) 

For the case of a uniform velocity profile, all equations (thermal energy balance and boundary 
conditions) are basically the same as the equations we had derived before for instationary heat 
conduction in an infinitely long cylinder, compare e.g. the following equations: 
 
Steady laminar convective flow through a tube with a uniform velocity profile with heat 
penetration via the walls: 

  
 (8.33) 

 

Instationary molecular transport into a cylinder: 
  

 (8.34) 

 

It can be seen that when selecting , which represents the travelling time of the medium 

through the tube, both equations become identical (which is allowed only because  is a 

constant, i.e. for uniform velocity profile!). Physically, this means the following. When looking 
at the heat transport process from a stationary coordinate system, fluid is flowing through the 
tube and a steady state profile of the mixing-cup temperature as a function of the axial 
coordinate is observed. However, imagine we would be able to miniaturize ourselves and be 
able to travel along with the fluid on its path through the tube. In this case, we would actually 
see the temperature profile in the radial direction evolving without any convective contribution, 
since the fluid flows as a plug through the tube (i.e. no radial velocity differences). It is stressed 
here, that the analogy is only valid for the case of a uniform velocity profile. Thus, the case of 
steady convective transport with radial conduction with a uniform velocity profile corresponds 
with the case of instationary radial conduction, simply by changing over to the local residence 
time. Therefore, all the solutions discussed in the previous chapter (e.g. graphical solution given 
in section 0) are equally valid for this case of laminar plug flow through a tube.  
 
Thus, the local Greatz number is related to the Fourier number. When the time  from the 

Fourier number  is replaced by the travelling time  of the medium in the tube, the 

following is obtained:  
 

 (8.35) 
 

This can be seen very clearly by slightly rewriting the dimensionless numbers for the case of a 
cylinder: 

 
 (8.36) 

and: 
 

 (8.37) 
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The local Greatz and Fourier numbers differ by a factor 4, which is caused by choice of different 
definitions of the characteristic length for a cylinder between these dimensionless variables, 
namely the radius R for the Fo number and the diameter d for the Gz number. 
 
Thermally developing flow 
In analogy with instationary heat conduction in an infinitely long bar, using the results of the 
penetration theory, the following holds for the local  for laminar plug flow: 
 

 

 
(8.38) 

 

when the condition  is fulfilled. For the length-averaged Nu-value  the 

following applies: 
 

 

(8.39) 

 
when the condition  is satisfied. Note the slightly more stringent restriction compared 
to the penetration theory for a flat plate, because of the cylindrical geometry. 
 
Equations (8.38) and (8.39) can easily be obtained from (7.61) and (7.62) by taking the tube 
diameter  as the characteristic length in the Nusselt number instead of the radius . Note 
that the radius of curvature of the cylinder is neglected (compared to the heat penetration 
depth) and that the driving force is calculated with the inlet temperature  instead of the flow 

average temperature . In the thermally developing regime these approximations can be 

justified because there is only a small amount of heat-transfer realized. 
 
The equations show that the dimensionless heat transfer coefficient Nu is decreasing with 
square-root of the local Gz number, which is related to the fact that the dimensionless 
temperature gradient at the wall is decreasing along the axial coordinate. In Figure 8.3 the Nu 
number is plotted as a function of the local Gz number. 
 
Thermally developed flow 
As can be seen from Figure 8.3, for  the Nu number decreases continuously for 
increasing values of , however, for  the local dimensionless heat exchange 
coefficient becomes constant and approaches the asymptotic value for an infinitely long tube. 
This is referred to as the regime of thermally fully developed flow. In the thermally developed 
regime, the shape of the radial temperature profile no longer changes, so that the dimensionless 
temperature gradient at the wall, and hence the dimensionless heat transfer coefficient, 
becomes constant (obviously the mixing-cup temperature is still changing!). 
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The -values reach an asymptotic value for an infinitely long tube when .  
 

 (8.40) 

 

It is stressed here that this is a local Nusselt number. For , the length-averaged  

will converge towards . For practical applications, however, in general the influence of the 

heat transfer in the region for  on  is significant, so that for these cases 

. 

 
The thermally fully developed heat transfer regime is of little practical importance, because for 

 the heat transfer (due to the small driving force) is relatively little effective. The 
regime with thermally developing flow (i.e. with a non-constant (local) heat transfer coefficient) 
however, is of great practical importance and occurs at relatively low  values (in practice, 
at the beginning of the tube). 
 

Parabolic velocity profile (Hagen-Poiseuille flow) 

Thermally developing flow: 
For a parabolic velocity profile (the usual case of laminar flow through a tube), given by equation 
(8.28), the following result can be derived by solving equation (8.22) with boundary conditions 
(8.24), (8.25) and (8.26): 
 

 

 
(8.41) 

 
when the condition  is satisfied. For the Nu value averaged over the tube length 

, , can be derived (check yourself!): 

 

 

(8.42) 

if . 
Substituting equation (8.41) in the differential thermal energy balance given by equation (8.10), 
the following expression for the (dimensionless) flow averaged temperature can be derived 
(check this yourself!): 

 

 
(8.43) 

 
Again, in the thermally developing regime with a parabolic velocity profile, the dimensionless 
heat transfer coefficient decreases with increasing local Gz number, however, now with the 
power -1/3 (instead of -1/2 for the case of a uniform velocity profile).  
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Thermally developed flow 
As can be discerned from Figure 8.3, also for the case of a parabolic velocity profile, the Nu 
number approaches a constant value when : 
 

 
 (8.44) 

 
The asymptotic value in case of a parabolic velocity profile is lower than the asymptotic value in 
case of a uniform velocity profile (see also Figure 8.3, showing that the -curve for the uniform 
velocity profile lies above the -curve for the parabolic velocity profile). This is caused by the 
larger fluid velocity (and thus a larger thermal loading capacity) near the heat-exchanging fixed 
wall in case of plug flow.  
 
With respect to the presented results it should be noted that two important assumptions were 
made: 
a) The physical properties of the flowing medium are independent of the temperature. 
b) The flow is hydrodynamically fully developed. 
 
The implications of deviations from these assumptions are discussed below. 
 

Temperature dependent viscosity 

When the physical properties of the flowing medium (like density  and viscosity ) are 
constant, the (parabolic) laminar velocity distribution is not influenced by the prevailing 
temperature gradients. However, the viscosity of a fluid is (strongly) dependent on the 
temperature and therefore the velocity profile will not be parabolic, which of course has 
consequences for the heat transfer. It has been empirically determined that for heat transfer in 
laminar tubular flow, the following modified form of equation (8.42) gives a satisfactory 
representation of the experimental results: 

 

 

(8.45) 

where  and  are the viscosities at the flow-averaged temperature  and the wall 

temperature , respectively. Because the viscosity of a liquid decreases with increasing 

temperature (note: for a gas it is the other way around!), from equation (8.45) (variable 
viscosity) and equation (8.42) (constant viscosity) it can be concluded that the heat transfer is 
improved when a flowing liquid is heated, while the opposite is true when the liquid is cooled. 
This behavior is explained by the change in shape of the radial velocity profile due to the 
temperature gradients and is illustrated in a qualitative way in Figure 8.5. When interpreting this 

figure, we compare cases with the same average fluid velocity . In case of heating of a liquid 

in a tube, the viscosity near the tube wall is lower than that in the centre of the tube, causing 
the velocity profile to become more flattened near the wall compared to the isothermal case 
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with a parabolic velocity profile. The higher liquid velocities near the wall induce a higher 
‘refresh-rate’ near the wall, increasing the heat transfer exchange of the liquid with the wall. In 
the case of cooling of a liquid in a tube, the viscosity near the tube wall is higher than in the 
centre of the tube and the velocity profile is elongated in the centre when compared to 
isothermal flow, resulting in a decrease of the heat exchange rate with the wall.  
 

 

Hydrodynamically developing flow 

In the derivations described before, it has always been assumed that the flow was 
hydrodynamically fully developed (i.e. the velocity profile is no longer changing as a function of 
the axial position), already at the beginning of the tube. However, there are practical situations 
in which the flow is hydrodynamically still developing, so the temperature profile and the 
velocity profile develop simultaneously. A well-known example is the case of heat exchangers 
where the heat-exchanging medium flows from a distributing part to a large number of parallel 
tubes, where the heat exchange occurs. At the beginning of these tubes, the velocity profile will 
be flat and with increasing axial position in the tubes, the velocity profile will develop gradually. 
In this situation, the ratio of two physical variables which determine the (radial) molecular 
transport of momentum and thermal energy plays an important role. These variables are the 
kinematic viscosity  and the thermal diffusivity , respectively. The ratio of these variables is 
called the Prandtl number, , which is defined as: 

 

 

(8.46) 

In the hydrodynamically developing regime, the Prandtl number appears as an independent 
dimensionless group and for the local value of the Nusselt number in laminar tubular flow, the 
following approximation could be used: 

 

 

(8.47) 
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Figure 8.5   Velocity profiles in laminar tubular flow (a: isothermal flow, b: heated tube wall, c: cooled tube wall). 

The average flow velocity  is kept constant. 
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This expression was obtained from the Nusselt correlation for flow past a flat plate (see 

paragraph 8.3) by multiplying both sides with  and replacing the flow velocity  by . 

From expression (8.47) follows that for hydrodynamically developing flow, the exponents of the 
Reynolds number  and the Prandtl number  are different, while for hydrodynamically 
developed flow (equation (8.41)) these exponents have the same value, because  can be 
rewritten as: 
 

 
 (8.48) 

 
Taking the flat plate analog a step further, a rough estimate for the region in which the flow is 
still hydrodynamically developing may be obtained from the penetration depth of the laminar 
velocity profile for a flat plate: 
 

 
 (8.49) 

 
This allows for a rough estimate of the influence of the local Nusselt values in the 
hydrodynamically developing region on the length-averaged Nusselt number. In the remainder 
of this course, it is assumed that the flow is always hydrodynamically fully developed already 
from the inlet of the tube. 
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8.2.2 Turbulent flow through tubes 

In process equipment we are often confronted with situations in which a turbulent flowing 
medium exchanges heat with a wall. This type of heat transfer cannot be described analytically, 
so we have to resort to an empirical approach. Dimensionless groups are used to allow for a 
compact description of the experimental results. For laminar flow, the heat transfer could be 

described with , for turbulent flow this can be done with a relation of the form 

. For heat transfer between a turbulent flowing medium and a fixed wall, the 

Nusselt correlations have the following general form: 
 

 
 

(8.50) 

 
Here the constants , ,  and  have to be determined experimentally. In situations in 

which there is transfer between a turbulent flowing medium and a fixed wall (i.e. a wall where 
the “no-slip” condition applies), a theoretical foundation can be laid using the film theory, while 
for situations in which there is transfer between a turbulent flowing medium and a freely moving 
wall (i.e. a wall where the “free-slip” condition holds), a theoretical foundation can be laid using 
the penetration theory. This difference in wall types, and corresponding boundary condition for 
momentum transfer with the wall, results in a difference in the exponent  of  in equation 
(8.50).  For heat exchange with fixed walls, the exponent of  has typically the value of , 
while for heat exchange with freely moving walls (interfaces), the exponent has the value of 
. Since heat transfer at freely moving walls occurs in practice less frequent than heat transfer at 
fixed walls, in the next paragraph the theoretical foundations of equation (8.50) are given using 
the film theory. In mass transport, the situation is actually the other way around and the 
theoretical foundations can in principle be based on the penetration theory. 
 
For heat transfer in turbulent flow through a tube, there are many practical correlations 
available, of which the most well-known is given by: 
 

 
 

(8.51) 

 

which can be used under the following conditions: ,  and  
(with  is the length of the tube). This empirical correlation has a remarkably good 
correspondence with the result that we will derive with film theory in the next paragraph. Note 
that this local Nusselt number is independent of the axial position, contrary to the case for 
laminar flow in the thermally developing regime. Finally, it is noted that this equation is often 
also used to find a quick estimate of the heat transfer coefficient for turbulent flow through 
channels with a non-circular cross-section. In this case, the tube diameter  needs to be 
replaced by the hydraulic diameter  in the equations for  and . 
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Theoretical background 

In Figure 8.6, a qualitative picture of the radial profiles of the time-averaged axial velocity and 
temperature are shown for heat transfer in turbulent flow through a tube. In turbulent flow, for 
both profiles an (almost) flat profile is observed in the center of the tube, while in the (very) 
thin fluid layers near the tube wall (the hydrodynamic and thermal boundary layer, respectively), 
strong velocity and temperature gradients are observed. The film theory schematizes this as 
shown in Figure 8.6. 
 

 
The (radial) velocity profile is approximated by a trapezoid, so that the flow is approximated as 

core-annulus flow. The core moves with a uniform velocity , while in the annulus region 

close to the wall with a thickness   the velocity reduces linearly from  to  at the tube 

wall. In the core, there is a very strong radial exchange of momentum by the vortices (resulting 
in a uniform velocity profile in the core), while in the hydrodynamic boundary layer, according 
to the assumption of the film theory, the radial momentum transport is dominated by molecular 
transport. It will be clear that this strict spatial distinction between the mechanisms of radial 
impulse transport is fictitious. In reality, there will be a gradual transition. However, the 
approximation shows a larger resemblance to physical reality for higher  values, i.e. when 
the flow through the tube is more turbulent. For the radial temperature profile, an analogous 
approximation is made, where the thickness of the wall zone is denoted by . 
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Figure 8.6   Schematized radial velocity and temperature profiles in terms of the film theory  
for heat transfer in turbulent flow through a tube. 



Energy transport by forced convection 

137 

Starting with a macroscopic momentum balance: 
 

 
 (8.52) 

 
and the Fanning friction equation (basically the definition equation of the friction coefficient f): 
 

 
 (8.53) 

 
the following can be derived for the average shear stress on the wall  in turbulent flow: 

 
 

 (8.54) 

 
According to the film theory, the following approximation for the velocity gradient is used: 
 

 
 (8.55) 

 
and from equations (8.54) and (8.55) follows: 
 

 

 

(8.56) 

 

Completely analogously for the heat transfer exchange between the fluid and the wall, using 
Newton’s law of cooling (using  to denote the wall temperature): 

 
 

 (8.57) 
 

and the approximation based on the film theory: 
 

 

 (8.58) 

 so that 
 

 

(8.59) 

 
From equation (8.59) follows after substitution of (8.56) for the -number: 
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For the ratio of the hydrodynamic and thermal boundary layer thickness holds for  
(which is often valid for fluids): 
 

 

 

(8.61) 

 
The friction coefficient  in equation (8.60) depends on . For smooth tubes in the range 

,  is well described by Blasius’s relation: 
 

 4𝑓𝑓 = 0.316 (𝑅𝑅𝑅𝑅)−0.25
  (8.62) 

 
Substitution of equations (8.61) and (8.62) into equation (8.60) yields the following expression 
for the -number: 
 

 
 

(8.63) 

 
Note that the same dependency of  on the  number is found as was derived before for 
laminar flow. Despite the fact that the film theory is based on a strong simplification of physical 
reality, the agreement between equation (8.63) and experimental results, fitted in equation 
(8.51), is quite reasonable. For actual calculations, of course equation (8.51) should be used. 
When using empirical correlations, one needs to realize that these are representations of a 
collection of measuring points in a mathematical form. This means, that one always needs to 
carefully check the range of validity (geometry, -range, -range, etc.) of the correlation and 
how the different physical variables are defined. In literature, for a specific situation, not always 
the same type of -correlation is used and/or the exponents of  and  can differ. In 
addition, often there are additional correction factors to account for e.g.: 
 
a) The temperature dependency of the viscosity; 
b) Development of the thermal boundary layer in the (turbulent) flow. 
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Temperature dependency of the viscosity 

The effect of variable viscosity on heat transfer is taken into account for turbulent flow, 
analogous to the situation for laminar tubular flow, by multiplying the right hand side of 

equation (8.51) with . This is referred to as the Sieder-Tate correction. Here,  is the 

viscosity corresponding to the flow-averaged temperature and  is the viscosity at the wall 

temperature . 

 

Thermally developing turbulent flow 

Also in the case of turbulent flow, there is a region where the flow is not yet thermally 
developed, and where the local heat transfer coefficient is higher than in the remainder of the 
tube. However, this region is much smaller for turbulent flow than in the case of laminar flow 
and can often be neglected for sufficiently long and/or thin tubes. Often the effect of the 
development of the development of the thermal boundary layer is taken into account by 

multiplying the right hand side of equation (8.51) with a correction factor .  

 
In practice, often charts with empirical data are used for the description of heat transfer to a 
(turbulent) flowing medium. In these charts, both the obtained empirical Nusselt correlation 
and the primary measurement data are shown. In this way, one can quickly see how accurately 
the obtained empirical correlation describes the experimental data. In Figure 8.7 an example is 

shown in which the dimensionless quantity  is plotted as a function of 

, for heat transfer in tubular flow. In the turbulent regime ( ) the following relation 
can be extracted from the figure: 
 

 

 

(8.64) 

 
while for the laminar regime ( ) the following applies: 
 

 

 

(8.65) 

 
Equations (8.64) and (8.65) show small discrepancies compared to the earlier presented 
correlations for heat transfer in turbulent and laminar tubular flow. The most important cause 
for this is the difference in primary experimental data, from which the empirical correlation is 
determined. The relations presented earlier are used as a basis for this course. The twist in 
Figure 8.7 relates to the transition from laminar to turbulent tubular flow, which occurs around

. 
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Figure 8.7   The dimensionless variable  as a function of the Reynolds number   

for heat transfer in tubular flow. (at  a transition of laminar to turbulent flow occurs). 
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8.2.3 Overall heat transfer coefficient 

In practice, we often encounter situations where there are several heat transfer processes 
occurring in series, as e.g. encountered in the description of heat exchange between two or 
more phases in a heat exchanger. In addition to the partial local heat transfer coefficients , 
which are given in dimensionless form in equations (8.64) and (8.65) for turbulent and laminar 
tubular flow conditions respecively, we make use of an overall heat transfer coefficient . We 
will elucidate how to derive the overall heat transfer coefficient for a series connection of heat 
transfer resistances for the simple case of a flat plate geometry (or the limiting case of a thin-
walled tube), which is easily extended to cylindrical geometries where the curvature of the tube 
cannot be neglected.  
 
As an example, we consider heat exchange between two flowing phases “1” and “2” (with bulk 

mixing-cup temperatures  and ), which are separated by a metal wall (with 

thickness  and thermal conductivity ), as schematically depicted in Figure 8.8. On the 

metal wall in contact with phase “2”, a thin layer of dirt has precipitated, with a thickness  

and thermal conductivity . The (partial) heat transfer of the flowing phases “1” and “2” to the 

walls is described with the respective (partial) convective heat transfer coefficients  and .  

An expression for the stationary heat flux between phases “1” and “2” needs to be obtained in 
terms of the bulk mixing-cup temperatures of the two phases. 
 

α

U

( )1T ( )2T

md mλ
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Figure 8.8   Qualitative description of temperature profiles in two heat-exchanging phases “1” and “2”, which are 
separated by a (thin) metal wall. The idealization of the temperature profiles according to the film theory is also 

illustrated (  and represent the thickness of the thermal boundary layers). 1δ 2δ
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In this situation we face a problem with a serial connection of heat resistances, where the heat 
flux is constant (in the steady state). The heat transport from phase “1” to phase “2” consists of 
the following four partial heat transfer steps, with their expressions for the heat flux given by: 
 

1. Heat transport from phase “1” to the metal wall: 
 

 (8.66) 
 

2. Heat transport in the metal wall: 
 

 (8.67) 
 

3. Heat transport in the dirt layer: 
 

 (8.68) 

 

4. Heat transport from the dirt layer to phase “2”: 
 

 (8.69) 

 
Elimination of the temperatures ,  and  yields the following relation between the heat 

flux and the overall driving force ( ): 

 

 (8.70) 

 
The heat flux between phases “1” and “2” can be defined in terms of the overall heat transfer 
coefficient : 

 
 (8.71) 

 

so that from equations (8.70) and (8.71) the following expression for the overall heat transfer 
coefficient  is obtained: 
 

 

 

(8.72) 

 

Inspection of equation (8.72) learns that the total heat resistance  consists of the sum of 

two convective heat resistances (  and ) and two conductive heat resistances (  

and ).  

If the thickness of the tube wall is not negligible with respect to the tube diameter, but the 
thickness of the dirt layer still is, the relation for the overall heat transfer coefficient takes the 
following form: 
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(8.73) 

 
where  and  are the outer and inner radius of the metal tube, respectively. It is easily 

verified that that for the limit , this approaches the case described above 

for the thin-walled tube. 
 
To conclude this section, in Table 8.1 an overview is given of typical values of the heat transfer 
coefficients for a number of different heat transfer processes. When using values from this table, 
realize that only the order of magnitude of  is given. 
 

Table 8.1   Typical values for heat transfer coefficients (in ) for a number of heat transfer processes.  

Heat flow Gas (free) 

 

Gas (flow) 

 

Fluid (free) 

 

Fluid (flow) 
Water: 

 
Other fluids: 

 

Boiling fluid 
Water: 

Other fluids: 

 
Gas (free) 

 

room-
outside 
through 
glass 

 

Overheaters 

 

 Furnace 

 
         + Radiation 

Steam kettle 

 
        + Radiation 

Gas (flow) 

 

 Heat 
exchangers for 
gasses 

 

Gas kettle 

 

Fluid (free) 

 

Radiator 
central 
heating 

 

 Oil bath for 
heating 

 

Cooling spiral 

 
When stirred 

 

Fluid (flow) 
Water: 

Other fluids: 

 

Gas coolers 

 

Heating spiral in 
vessel 
Water-water: 
No stirring: 

 
With stirring: 

 

Heat exchangers 
Water-water: 

 
Water-other: 

 

Evaporators of 
cooling aggregates, 
brine coolers 

 

Condensing vapor 
Water: 

Other fluids: 

 

Steam 
radiators 

 

Air heaters 

 

Steam mantles 
around vessels 
with stirrers, 
Water: 

Other fluids: 

 

Condensors  
Steam-water: 

 
Other vapor-water: 

 

Evaporators 
Steam-water: 

 
Steam-other: 
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5 15α = − 10 100α = − 50 1000α = −
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500 2000α = −

3500 60000α = −

1000 20000α = −

5 15α = −

1 2U = −

3 10U = − 10 40U = − 10 40U = −

10 100α = −

10 30U = −

10 50U = −

50 1000α = −

5 15U = −

25 500U = −
500 1500U = −

3000 10000α = −

500 3000α = −

10 50U = −

50 250U = −

500 2000U = −

900 2500U = −

200 1000U = −
300 1000U = −

5000 30000α = −

1000 4000α = − 5 20U = −

10 50U = −

300 1000U = −

150 50U = −

1000 4000U = −

300 1000U = −

1500 6000U = −

300 2000U = −
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8.3 Heat transport in flow past objects 

In the case of heat transfer for flow past objects, the flow conditions always correspond with 
simultaneously hydrodynamically and thermally developing flow. The general form of the 
Nusselt correlations is given in equation (8.50). For fixed objects, the exponent of the Prandtl 
number is in principle equal to , while for not too high Reynolds numbers, the exponent of 

the Reynolds number can, as a rule of thumb, be taken equal to . For a number of frequently 
encountered geometries, the appropriate Nusselt correlations will be shortly discussed and 
graphically depicted. 

8.3.1 Flow past a flat plate 

For the laminar part of (axial) flow past a flat plate at a uniform temperature, the following is 
valid for the local Nusselt number : 

 
 

 

(8.74) 

 
provided that  and , where  is the (undisturbed) flow velocity and 

 is the main flow direction. Note that equation (8.74) gives an expression for the local heat 
transfer coefficient . For the average heat transfer coefficient over the entire length  of the 
plate, the following Nusselt correlation is easily derived 
 

 

 

(8.75) 

 
again provided that  and . Equation (8.75) is derived from (8.74) by 

integration over  and subsequently dividing by  (try this yourself!). Both equations are valid 
for the laminar flow regime, thus at the beginning of the plate. 
 
For sufficiently long plates, a turbulent flow region will develop in the region behind the laminar 
region. This gives rise to two areas with different flow- and heat transfer characteristics. For 

, there is laminar flow, while for  there is turbulent flow, where  represents the 

-coordinate at which the change in flow regime occurs (  corresponds to the critical Reynolds 

number ). In the area with turbulent flow, the following empirical Nusselt 

correlation can be used to describe the local heat transfer coefficient: 
 

 

 

(8.76) 

This correlation is valid when: .  
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For the calculation of the average heat transfer coefficient  in the case of flow past a flat 

plate, a distinction is made between two situations: 
 
1. There is turbulent flow over practically the entire plate. For the average heat transfer 

coefficient , the following Nusselt correlation is used (via integration of equation (8.76) over 

x and dividing by L): 
 

 

 

(8.77) 

 
2. There is laminar flow at the beginning of the plate (x<xc) and turbulent flow at the rest 

of the plate (x>xc). Then, the average heat transfer coefficient  can be found via: 

 
 

 (8.78) 

 
Substitution of equation (8.74) for  and (8.76) for  yields the following Nusselt 

correlation (check this yourself!): 
 

 

 
(8.79) 

 
Note that (8.79) reduces to (8.77) when the critical Reynolds number  is much smaller than 

the Reynolds number over the total plate length . In this situation,  and the 

laminar flow region (that in principle is always present) is of minor importance. 
 
In 
Figure 8.9 , the Nusselt correlation for heat transfer for axial flow past a flat plate is illustrated. 

In this figure, the dimensionless quantity   is shown as a function of 

the Reynolds number . A correction factor for variable viscosity (due to temperature 
differences) appears, where  corresponds to the viscosity for the flow conditions in front of 

the plate. In this figure, also the measuring points, forming the basis of the Nusselt correlation, 
are shown. The figure shows two curves. The differences between these curves are related to 
the earlier or later occurrence of the transition to turbulent flow (i.e. for lower or higher  
values). The continuous curve is valid for , while for the dashed curve . 

Differences in  are caused by differences in the experimental conditions, e.g. the 

turbulence-intensity of the undisturbed flow.  
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8.3.2  Flow past a sphere 

For flow past a sphere, the following Nusselt correlation has been determined for the average 
heat transfer coefficient (averaged over the entire surface of the sphere), which is also known 
in the literature as the Ranz-Marshall correlation: 
 

 

 

(8.80) 

 

The Ranz-Marshall correlation is valid when:  and  and is shown 

graphically in Figure 8.10. Note that for , equation (8.80) reduces to , which is 

consistent with equation (7.35) derived in paragraph 7.2.4.  
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Figure 8.9   The dimensionless variable  as a function of the Reynolds number  

for heat transfer in (axial) flow past a flat plate. 
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Figure 8.10   The Nusselt number  as a function of the Reynolds number ,  

according to the Ranz-Marshall correlation (equation (8.80), for flow past a sphere. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

8.3.3 Flow past a cylinder 

For an infinitely long cylinder (with diameter ), of which the central axis is perpendicular to 
the main flow direction, the following Nusselt correlation is given for the average heat transfer 
coefficient (averaged over the cylinder surface): 
 

 

 

(8.81) 

 

This correlation is valid for: . For this geometry, also other Nusselt correlations are 
available, of which Figure 8.11 gives an example. In this figure, the dimensionless quantity 

 is given as a function of the Reynolds number . The line represents 

the following Nusselt correlation, which describes the experimental data satisfactory for 

: 
 

 (8.82) 

Note that in this correlation, the exponents of  and  deviate from those in equation (8.81), 
which is caused by differences in experimental data. For perpendicular flow past tubes of all 
kinds of shapes other than circular, a large number of correlations is available in literature. This 
also holds for flow past bundles of tubes, as encountered in e.g. shell-and-tube heat exchangers. 
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Figure 8.11   The dimensionless quantity  as a function of the Reynolds number  for 

heat transfer in perpendicular flow past an infinitely long cylinder. 
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9 Energy transport by free convection 

9.1 Introduction 

In the discussion of forced convective heat transport in the previous chapter, we have seen 
that the heat exchange with walls or objects in the presence of a forced convective flow is 
influenced by the heat transport. Due to the temperature gradients perpendicular to the 
wall/surface of the object, the local velocity profile is affected, which affects the heat exchange 
rate, which was into account in the form of an empirical correction term for the temperature 
dependence of the viscosity (Sieder-Tate correction). In the case of free convection, also 
referred to as natural convection, the interaction between the flow field and the heat transfer 
is much more intimate: in free convection the convection (i.e. macroscopic movement of the 
fluid) is not caused by an external force like the pressure gradient or gravity, but is actually 
caused by the heat transport.  
 
Heat transport due to free convection occurs if a fluid (a gas or a liquid), in absence of forced 
convection, exchanges heat with a fixed body. Because the density of gasses and (to a lesser 
extent) liquids is dependent on the temperature, density changes prevail due to the heat 
exchange, which induces free convective flow in the fluid due to the created buoyancy forces, 
provided that the internal friction (viscous) forces can be overcome. In the case of forced 
convective heat transport, free convection is in principle always present as an additional heat 
transport mechanism, but because the heat transfer coefficient for free convection is very 
much smaller than that for  forced convection, free convection is often of minor importance (

). However, in the absence of forced convection, heat exchange by 

free convection can play an important role in addition to heat exchange via radiation 
(discussed in the next chapter), for example when studying heat losses from an insulated 
reactor to the surroundings.  
 
Free convection can in principle occur if: 
• there is a temperature difference  between the fluid and the wall, 
• the density  of the fluid is temperature dependent, 

• the stabilizing viscous forces are small (i.e. low viscosity η). 
 
Free convection is strongest with large temperature differences, large variation of the density 

 with temperature , low viscosity η (gasses) and a large value of the gravitational 
acceleration. Density differences can also be caused by differences in the concentration of 
solutes in liquids, so that free convection can also play a role in mass transport processes.  
 
In Figure 9.1, the qualitative development of the (stationary) temperature- and velocity 
profiles for free convection to a vertical plate with a uniform wall temperature  is depicted. 

At a large distance of the plate, the fluid (in rest) has a temperature . Fluid elements in the 

direct vicinity of the wall will expand due to heating and will therefore experience a lower 

free convection forced convectionα α<<

T∆
ρ

ρ T

1T
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gravitational force per unit volume than their less heated neighboring fluid elements and will 
therefore rise because of the upward force (buoyancy).  

 
 
Because the heating process progresses with increasing height  along the wall, a velocity 
distribution develops in the fluid where the maximum velocity increases with increasing . 
The thickness of the area in which the principal velocity gradients are located (referred to as 

the boundary layer thickness ) increases due to the increasing extent of heating with 

increasing . In the stationary situation, a height- and -dependent velocity distribution 

 is established, which is, among other things, determined by the heat-flux from the 

wall to the fluid. This heat flux is in its turn dependent on the velocity distribution. Therefore, 
the microbalances for momentum (i.e. the Navier-Stokes equations) and thermal energy need 
to be solved simultaneously to get a quantitative description. This solution can in principle be 
obtained analytically for geometrically simple systems with laminar free convection.  

x
x

( )xδ

x x
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Figure 9.1   Qualitative development of the (stationary) temperature- and velocity profiles for free convection to a 
vertical plate with a uniform wall temperature .  

(  is the bulk temperature of the fluid at a large distance of the plate). 
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9.2 Empirical relations 

For the local heat transfer coefficient  for free convection, it turns out that the following 
general form is obtained (for a general derivation see paragraph 9.3): 
 

 
 (9.1) 

 
In this equation,  is the coordinate direction in which free convection takes place. The 
physical transport properties ,  and  generally need to be evaluated at the average 
temperature of the boundary layer. In equation (9.1),  is the relative cubic expansion 
coefficient, defined by: 
 

 
 (9.2) 

 
For gasses and liquids,  needs to be evaluated at the bulk temperature and the average film 
temperature, respectively. The relative cubic expansion coefficient  can be calculated when 
an equation of state is available which describes the density  of the fluid as a function of the 
temperature . With help of the ideal gas law and the definition of , for gasses, the 
following can be easily derived (check this yourself!): 
 

 
 (9.3) 

 
For fluids, tables are used in which the relative cubic expansion coefficient  is given as a 

function of temperature. The average heat transfer coefficient  which occurs over a certain 

length , has a form that resembles equation (9.1), but where the local -coordinate is 
replaced by the length : 
 

 
 (9.4) 

 
For the local and average heat transfer coefficient, the driving force is the difference between 
the wall temperature  and the bulk temperature of the fluid . As can be seen in equation 

(9.4), the heat transport is determined by the dimensionless number . This 

is called the Rayleigh number for length : 
 

 
 (9.5) 
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The Rayleigh number  can be written as the product of the Grashof number for length 

, , and the Prandtl number : 

 
 

 (9.6) 

 
From equation (9.6) follows that the Grashof number for length , , is defined as: 

 
 

 (9.7) 

 
The Grashof number plays an important role in the description of free convection and this 
dimensionless number takes over the role that the Reynolds number  plays in forced 
convection.  
 

9.2.1 Free convection past a vertical flat plate 

Completely analogous to the case of forced convection, also in free convection past a flat plate, 
there is laminar region at the beginning of the plate and at a certain critical distance from the 
beginning of the plate a transition to turbulent free convection sets in. For a vertically 
positioned flat plate, this is schematically shown in Figure 9.2. 
 
For laminar free convection along vertical surfaces it has been determined (via theoretical and 
experimental routes), that the following equation describes the average heat transfer 
coefficient: 
 

 
 (9.8) 

 
This equation is valid for . When , a transition from laminar to 

turbulent free convection takes place. For turbulent free convection past a vertical plate, it has 
been empirically determined that the average heat transfer coefficient can be calculated with: 
 

 
 (9.9) 

 

This equation is valid for . Note that  in the turbulent regime is 

independent of the length  of the (vertical) plate. 
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The above Nusselt correlations for free convection along a vertical flat plate can also be used 
in good approximation to estimate the heat transport rate due to free convection for the 
following geometries: 
 
• Spheres with diameter L 
• Vertical cylinders with height L 
• Horizontal cylinders with diameter L 
• Cubes with edge L 
 

  

 
  

   

 

  

 

  

 

  

  

  

  

  

  

  

Figure 9.2   Transition from laminar to turbulent free convection for a vertical flat plate.  
The transition occurs when . 910LRa >
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9.2.2 Free convection past a horizontal flat plate 

The heat exchange due to free convection between a horizontally positioned flat plate (with 
uniform wall temperature ) and a fluid (with bulk temperature ) can be described with a 

Nusselt correlation of the following general form: 
 

 

 (9.10) 

 
The values of the constant  and exponent  are dependent of the orientation of the plate 
(see Table 9.1). The quantities , ,  and  are defined in the same way as for the vertical 
flat plate. As can be seen in Table 9.1, in situations where the hot wall is at the lower side of 
the plate or the cold wall is on the upper side of the plate, the system is relatively stable, 
because the regime with laminar free convection exists up to very high values of 

. 

 
For the characteristic length , depending on the geometry, is taken: 
• The length of an edge for a square plate 
• The average of the lengths of the edges for a rectangular plate 
•  for a round disc with diameter  
 
 

Table 9.1   Values of the constant  and the exponent  in equation (9.10). 
for free convection from a horizontally positioned flat plate. 

Orientation of the plate    Regime 

Hot wall on the upper side  
or cold wall on the lower side  to    Laminar 

Hot wall on the upper side  
or cold wall on the lower side  to    Turbulent 

Hot wall on the lower side  
or cold wall on the upper side  to    Laminar 
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9.3 Theoretical background 

At the end of this chapter we will give a derivation to show that the Nusselt correlations for 
free convection will take the general form described with equation (9.4). The starting point is 
given by the (stationary) microbalances for mass, momentum and thermal energy, which 

describe the velocity profiles  and  and the temperature profile  in 

the boundary layer. For the formulation and simplification of these equations, we will assume 
the geometry sketched in Figure 9.1 (vertical flat plate). 
 
Microbalance for mass (continuity equation): 
 

 
 (9.11) 

 
Microbalance for -momentum (Navier-Stokes equation for a Newtonian fluid): 
 

 
 (9.12) 

 
Microbalance for thermal energy: 
 

 
 (9.13) 

 
These equations are principally valid for a fluid with constant density (incompressible fluid), so 
strictly speaking, they are not applicable for the analysis of free convection in the boundary 
layer. However, this simplification will not influence the result of our analysis. 
 
The microbalance for -momentum (9.12) can be further simplified by means of the following 
assumptions/simplifications: 
 
1. The momentum transport in the -direction is dominated by convection: 
 

 
 (9.14) 

 
2. The pressure gradient in the developed boundary layer is equal to the pressure 
gradient in the stagnant medium: 

 
 (9.15) 

With these assumptions, the following simplified form of the microbalance for -momentum 
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 (9.16) 

 
In the microbalance for thermal energy, the molecular heat transport in the -direction is 
neglected compared to the convective heat transport in the -direction, so (9.13) reduces to: 
 

 
 (9.17) 

 
Equations (9.16) and (9.17) are coupled via the temperature dependent density . For gasses, 
according to the ideal gas law and the definition of the relative cubic expansion coefficient 

, the following holds for the term : 

 
 

 (9.18) 

 
For liquids, there is generally no equation of state which explicitly defines the density  as a 

function of the temperature . Therefore, using a Taylor series expansion,  and  are 

expressed in a reference density , which is the density of the liquid at temperature . 

Generally the average temperature of the heat transfer film is taken as . On basis of these 

Taylor series expansions, we can deduce the following for the density difference : 

 
  

 (9.19) 

 
When equation (9.19) is divided by , the following can be stated using the definition of the 

relative cubic expansion coefficient : 
 

 
 (9.20) 

 

Because changes in density are generally very small for liquids, the term  at the 

right hand side of equation (9.16) can in good approximation be replaced by . 

After combination with equation (9.20) the following is obtained: 
 

 
 (9.21) 
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So the term  at the right hand side of equation (9.16) can for both gasses and 

liquids be written as the product of a relative cubic expansion coefficient  and a (local) 

temperature difference , so that the following alternative form of the microbalance 

for -momentum can be obtained: 
 

 
 (9.22) 

 
Equations (9.11), (9.17) and (9.22) are rewritten in dimensionless form by introducing: 
 
The dimensionless - and - coordinates: 
 

 
 (9.23) 

 
The dimensionless velocity components: 
 

 
 (9.24) 

 
The dimensionless temperature: 
 

 
 (9.25) 

 
After substitution of these dimensionless variables (9.23), (9.24) and (9.25) in (9.11), (9.17) 
and (9.22), the following dimensionless transport equations are obtained: 
 
The dimensionless microbalance for mass: 
 

 
 (9.26) 

The dimensionless microbalance for -momentum: 
 

 
 (9.27) 

 
The dimensionless microbalance for thermal energy: 
 

( )ρ ρ ρ∞ −

β

( )T T∞−

x

( )
2

2
x x x

x y
v v vv v T T g
x y y

ν β ∞

∂ ∂ ∂
+ = + −

∂ ∂ ∂

x y

   and   x yx y
L L

∗ ∗= =

   and   yx
x y

LvLvv v
ν ν

∗ ∗= =

1

T TT
T T

∗ ∞

∞

−
=

−

0yx vv
x y

∗∗

∗ ∗

∂∂
+ =

∂ ∂
x

2 3

12 2
x x x

x y
v v v gLv v T T T
x y y

β
ν

∗ ∗ ∗
∗ ∗ ∗

∞∗ ∗ ∗

 ∂ ∂ ∂
+ = + − ∂ ∂ ∂  



Chapter 9  TRANSPORT PHENOMENA 

158 

 
 (9.28) 

 
In these dimensionless transport equations, the Grashof number  and the Prandtl number 

 appear as dimensionless variables. When the transport equations (9.26), (9.27) and (9.28) 
are solved with suitable boundary conditions, among other things the dimensionless 

temperature  is obtained, which is a function only of , ,  and : 

 
 

 (9.29) 

 

From equation (9.29) follows that the average dimensionless heat transfer coefficient  is 

a function only of the dimensionless variables  and , as expressed in equation (9.10). 

For laminar and turbulent free convection it turns out that the exponents  and  are 

often the same, so that the Grashof and Prandtl numbers can be combined into a new 
dimensionless number, namely the Rayleigh number . This is completely analogous to 

case of laminar forced convection where the Graetz number Gz appeared as the combination 
of the Reynolds number Re and the Prandtl number Pr.  
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10 Energy transport by radiation 

10.1 Introduction 

The exchange of thermal energy from the sun to the earth is the most well-known example of 
energy transport by radiation. However, also in process equipment radiative energy transport 
can play an important role, in addition to other transport mechanisms, e.g. in ovens or high 
temperature reactors. The energy transport by radiation differs fundamentally from the other 
transport mechanisms (conduction and convection), the most salient discrepancy being that 
radiation is brought about via electromagnetic waves and does not require an intervening 
medium, so that radiative energy transport becomes dominant in vacuum or low pressure 
systems. Moreover, the driving force and hence the temperature dependency of energy 
transport by radiation is fundamentally different in comparison to other transport mechanisms. 
For objects at room temperature, the energy exchange between the object and its surroundings 
due to radiation is generally in the same order of magnitude as that caused by free convection, 
but much lower than that by forced convection. However, the importance of radiative energy 
transport increases very strongly with increasing temperatures. Finally, there is no analog of 
radiation in mass transport. 
 
All physical objects above the absolute zero temperature emit radiation, caused by the 
transition of the atoms/molecules in an object between different energy levels, which is 
accompanied by the absorption or emission of a photon, thus bringing about energy exchange 
via electromagnetic waves. Since these electromagnetic waves are the result of a multitude in 
possible changes in electronical, vibrational and rotational energy, the emitted radiation spans 
a certain range of wavelengths. In engineering applications the most important spectrum is the 
wavelength range between 10-7 and 10-4 m, often referred to as thermal radiation. Radiation in 
the visible part of the spectrum constitutes only a narrow range of wavelengths, which are 
typically only significantly emitted by objects at very high temperature. Heat transport due to 
radiation for objects at ambient conditions typically occurs at wavelengths in the (far) infrared 
region. 
 
For radiative energy transport, in principle no intermediate medium is required. However, 
liquids typically absorb all the radiative energy in a very small layer, while most gasses do hardly 
absorb the radiation at all, referred to as non-participating media (where CO2 and H2O are the 
most famous exceptions). A non-participating medium surrounding two objects does not absorb 
any radiation emitted from the objects and hence does not influence the radiative energy 
exchange between the two objects. In this case, convective and radiative energy transport takes 
place independently and in parallel (although indirectly coupled via the temperature of the 
surfaces of the objects).  
 
Moreover, objects can be transparent or opaque for radiation (which can actually be different 
at different temperatures or for different wavelengths). From a transparent object, such as glass, 
salt crystals, high temperature gasses, the radiation emitted via the surface of the object results 
from emissions from throughout the entire object. In this case, emission of radiation is a bulk 



Chapter 10  

160 

or volumetric phenomenon. On the other hand, radiation emitted from within an opaque 
object, such as metals, brick and wood, cannot reach the surface and only radiation emitted 
from material in the direct vicinity of (typically within 1 µm from) the external surface will be 
emitted from the object. In this case, emission of radiation is a surface phenomenon. Note that 
whether an object is transparent or opaque for radiation in principle also depends on the 
temperature. 
 
The mathematical description of radiation differs strongly from that for convection and the 
equations involved (stemming from quantum mechanics) are often very difficult to solve 
(integro-partial differential equations), especially in cases where participating media and 
transparent objects with difficult geometrical shapes are involved. Fortunately, simplified 
limiting cases can be identified which for many engineering applications can give a first quick 
estimate of the importance of radiative heat transport. Therefore, in this chapter we will focus 
on the radiative energy exchange between two opaque objects in a non-participating medium. 
First, we start with some general theoretical background on emission and absorption of 
radiation and subsequently we will study the radiative energy exchange for two limiting 
geometrical cases: 
 
1. Two infinitely long flat plates; 
2. One object enclosed within another one. 
 

10.2 Emission and absorption of radiation 

10.2.1 Black bodies 

An ideal ‘black’ body absorbs all incident radiation (i.e. no reflection of radiation). Note that 
here the term black does not refer to the color of the object, since the human eye can detect 
radiation only in very limited range of wavelengths. A black body also emits radiation in a range 
of wavelengths, where the intensity of radiation (in W/m2) emitted by a black body at a 

certain wavelength λ is a function of the temperature of the object, is given by Planck’s law: 
 

 
(10.1) 

 
where h is Planck’s constant (h = 6.6256·10-34 J·s),  k is Boltzmann’s constant (k = 1.38054·10-23 
J·K), c is the speed of light (c = 2.9979·108 m/s).   
The maximum intensity of the spectrum of wavelengths emitted by a black body shifts towards 
smaller wavelengths with increasing temperature according to Wien’s law.  
 

  (10.2) 
 
For our sun , so that the surface temperature of the sun can be estimated at 5760 

K. 

, ,b e λ′′Φ

2

, , 5
2 1

exp 1
b e

c h
hc
kT

λ
π
λ

λ

′′Φ = ⋅
  − 
 

max 2880 m KTλ µ= ⋅

max 0.5 mλ µ≈



Energy transport by radiation 

161 

 
 
When integrating over all wavelengths, the total heat flux due to radiation emitted by a black 
body can be found, referred to as Stefan-Boltzmann’s law: 
 

 
 (10.3) 

 

Here, the Stefan-Boltzmann constant  is defined with W/(m2K4). 
 

10.2.2 Real bodies 

Emissivity 

Real bodies do not absorb all incident radiation, but they reflect and possibly transmit part of 
the radiation. In this course we will only consider opaque bodies, i.e. emission and absorption 
only takes place at the surface of the body. 
 
The ratio of the radiation emitted by a real object and the radiation emitted by an ideal black 
radiator at the same temperature, both for a single given wavelength, is defined as the 
monochromatic hemispherical emission coefficient . This coefficient depends on the 

wavelength of the emitted radiation and the temperature of the object. For a black body,  is 

equal to one by definition. The term “hemispherical” refers to the hemisphere that encloses the 
area from which the radiation emerges. Integration over all directions, on which the emissivity 
can also be dependent, has already been performed.  
 

 
 (10.4) 

 
The integral emission coefficient e is defined as the ratio of the (total) radiation emitted by a 
real object compared to that which would be emitted by a black body at the same temperature: 
 

 

 (10.5) 

 

The radiation emitted by a black body presents the upper limit, so that . 
 
In engineering applications, detailed information on the emissivity as a function of wavelength 
is unfortunately often not available. However, for many materials, the monochromatic 
hemispherical emission coefficient  can be assumed (more or less) independent of the 

( )
5 4

4 4
, , , 2 3

0

2
15b e b e

kd T T
c hλ
πλ λ σ

∞  ′′ ′′Φ = Φ = = 
 

∫

σ 81067.5 −⋅=σ

λe

λe

, ,

, , ,

r e

r b e

e λ
λ

λ

′′Φ
=

′′Φ

( ) ( ), , , ,
, 0 0

4
, ,

, ,
0

b e b e
r e

r b e
b e

e d e d
e

T
d

λ λ λ λ

λ

λ λ λ λ

σ
λ

∞ ∞

∞

′′ ′′Φ Φ
′′Φ

= = =
′′Φ

′′Φ

∫ ∫

∫

0 1e≤ ≤

λe



Chapter 10  

162 

wavelength. Surfaces for which  is independent of the wavelength  are known as gray 

surfaces. The emitted heat flux from a gray surface is then given by: 
 

  (10.6) 

Absorptivity 

The fraction of the incident radiative energy that is absorbed by a real object, both at a certain 
wavelength, is defined as the monochromatic absorption coefficient aλ: 
 

 
 (10.7) 

 

Note that for a black body . Integrated over all wavelengths, the integral absorption 

coefficient a is defined as: 
 

 (10.8) 

 

Kirchhoff’s law (for a gray body) 

If the intensity of the emitted radiation is independent on the direction with respect to the 
surface, the surface is called diffuse. For diffuse gray surfaces, Kirchhoff’s law states that: 
 

  (10.9) 
 

That is, the absorption coefficient is equal to the emission coefficient for these surfaces. Finally, 
some typical values of emission (or absorption) coefficients are shown in Figure 10.1. Note that 
metals generally have a low emission coefficient. Also note that for example paint, having 
generally a low absorption in the visible spectrum, has actually a high absorption coefficient. 
This originates from the dependency on the wavelength of the absorption coefficient. 

 
Figure 10.1: Emission coefficients of some commonly used materials 
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10.3 Radiative energy exchange between two opaque gray bodies 

The emitted energy flux due to radiation from an object is, in itself, independent of the 
surroundings. However, the energy exchange between two bodies depends on their 
temperatures and the geometric arrangement. Consider for example Figure 10.2, clearly 
showing that not all radiation originating from the first object impinges on the second. In 
literature (e.g. Perry’s ‘Handbook for Chemical Engineers’ or the excellent book ‘Radiant Heat 
Transmission’ by H.C. Hottel), for various geometries so-called “view factors” (or “angle factors”) 
are published. The view factor Fij is defined as the fraction of the total radiation originating from 
object  that reaches object . Note the difference between Fij and Fji, so that generally

, but , where Ai is the surface area of object i. 

 
The view factors are calculated by considering the surfaces of both objects to be built up from 
infinitesimally small sub-surfaces. The view factors are related to the fractions of the 
hemispheres surrounding these emitting sub-surfaces of object i that are directed towards 
those of object j. The mathematical treatment of view factors is left out of consideration in this 
introductory course. Here, two limiting cases that can often be usefully applied are considered, 
where the view factors are trivial from the geometrical arrangement. 

 
Figure 10.2: Schematical representation of heat transfer by radiation between two bodies 

 

Exchange between two opaque black bodies: 

Consider now the net radiative energy exchange between two opaque black bodies, with a 
temperature T1 and T2 respectively, in a non-participating medium. Since black bodies absorb 
all the incident radiation (no reflection), all the radiative energy emitted by object 2 that reaches 
object 1 is absorbed by object 1 and vice versa, in the steady state.  

     

 (10.10) 

 

The net radiative energy exchanged per unit of time between the two objects is then 
 

  

    (10.11) 
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Substitution of equations (10.10) yield for the net radiative energy flux:  
 

  (10.12) 
 

Subsituting Stefan-Boltzmann’s law for the radiative energy flux for black radiators and using 
, the following can be derived for the net rate of energy exchange per unit of time 

by radiation from object 1 to object 2: 
 

  (10.13) 
 

Exchange between two opaque gray bodies: 

In the case of radiative energy exchange between gray bodies, the total radiated energy flux, 
referred to as radiosity J, equals the sum of the emitted radiative flux from the body itself (

) and the part of the total incident flux G that is being reflected ( ): 
 

  (10.14) 
 

The net radiative energy flux leaving object 1 ( ) is equal to the total emitted flux (  ) 

minus the absorbed flux ( ), which equals the total radiated energy flux minus the total 
incident radiative energy flux (substitute equation (10.14)): 
 

  (10.15) 
 

Thus  and substitution in equation (10.14) yields (making use of Kirchhoff’s law 

stating that a = e): 
  (10.16) 

 

so that net radiative energy flux is given by 
 

 
(10.17) 

or equivalently for the net radiative energy flow: 
 

 
 

(10.18) 

This equation can be interpreted in terms of Ohm’s law, where the driving force  equals 

flow  times resistance , which allows an easy derivation of the total resistance in 

networks of objects (e.g. several parallel radiation sheets). Now the net energy exchange 
between two opaque gray bodies is derived for two geometrically simple (but practically 
important) cases. 
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10.3.1 Radiation between two gray infinitely long parallel flat plates 

Consider the case of two infinitely large parallel plates of gray, diffuse material, where we 
assume that both plates individually have a uniform temperature T1 and T2 respectively (see 
Figure 10.3). Only the surfaces facing each other are considered. For infinitely long plates, only 
an infinitesimally small fraction of the radiation coming from the first plate will not reach the 
second plate, and vice versa, i.e. the view factors . Then, it can be assumed that all 

radiation received by a plate is coming from the other, and that all radiation emitted by a plate 
is received by the other and that there are no losses in radiative heat transfer.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10.3: Radiative energy exchange between two parallel infinitely long flat plates 

 
Since the surface area of both plates are identical ( ), this can be expressed as: 
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Rewriting using equation (10.21) yields: 
 

   

 
(10.23) 

After subtraction of these equations: 
 

 (10.24) 

and upon substitution in equation (10.20): 
 

 (10.25) 

 
 

 (10.26) 

 

so that finally for the net radiative energy exchange rate between two gray, opaque, infinitely 
long parallel plates is found: 

 
 

(10.27) 

Note that this equation indeed reduces to equation (10.13) for radiative energy exchange 
between black bodies for the case of  (since F12=1). 
 

10.3.2 Radiative energy exchange with an enclosed gray object 

Consider the case of a gray object, “1”, that is fully enclosed by another gray object, “2” (see  

Figure 10.4). This could for example be a tank “1” in a concrete shed “2” or two concentric tubes 
or spheres. In this situation, all radiation emitted by object “1” is received by object “2”. Object 
“2” may be emitting to its own respective surroundings too, but here we only consider the net 
radiative energy exchange with object “1”.  
 
 
 
 
 
 
 
 
 
 

 
Figure 10.4:  
Graphical representation of radiative heat exchange between an enclosed (“1”) and an enclosing (“2”) object. 
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For this geometry holds: 
  (10.28) 
  

 
(10.29) 

so that again 
  (10.30) 

 
For this geometry the net radiative energy exchange from the enclosed object is: 
 

  (10.31) 

 
Similar to before, use equation (10.18): 
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and rewrite using equation (10.30) to obtain: 
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After subtraction of these equations: 
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and upon substitution in equation (10.31): 
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so that finally for the net radiative energy exchange rate between two gray, opaque, infinitely 
long parallel plates is found: 
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(10.37) 

 
In many cases the surface area of object “1” is much smaller than that of object “2”, i.e. 

, so that equation (10.37) reduces to  
 

  (10.38) 

 
 

10.3.3 Radiative heat transfer coefficient 

In many cases, for example in comparing the relative importance transport due to radiation and 
free convection, it is handy to define a (fictitious) heat transfer coefficient due to radiation 
according to: 
 

 
 (10.39) 

with 
      (infinitely long parallel flat plates) 

    (object “1” enclosed in object “2”) 
(10.40) 

 
For radiative heat exchange between objects with temperatures around room temperature and 
having typical values for the emission coefficient, a typical value of  of about 6 W/(m2K) is 
found, which is quite comparable with heat exchange coefficients found for free convection. 
However,  increases strongly with increasing temperatures. 
  

( )
( ) ( )

4 4
1 2

,1 2 ,1
1 2

1 1 1 2 2

1 11r r

T T
e e

A e A e A

σ
→

−
Φ = Φ =

− −
+ +

1 2A A<<

( )4 4
,1 2 1 1 2 1r e T T Aσ→Φ = −

( )
( )

( )

4 4
1 2,1 2

1 2 1 2

ovr
r

e T T
T T T T

σ
α →

−′′Φ
≡ =

− −

( ) ( )1 2

1 2

1
1 1

1
ove

e e
e e

=
− −

+ +

( ) ( )1 21

1 2 2

1
1 1

1
ove

e eA
e A e

=
− −

+ +

rα

rα



Molecular mass transport 

169 

11 Molecular mass transport 

11.1 Introduction 

There is a very strong analogy between mass and heat transfer processes, both for molecular 
and convective transport processes, so that the mathematical description for these processes is 
very similar and many results already discussed for heat transfer processes in the previous 
chapters can be easily ‘translated’ and used to describe mass transfer processes. In this chapter 
molecular mass transport, or diffusion, is studied. The combination of mass transfer processes 
in combination with chemical reactions is outside the scope of this course. The extension to 
chemically reactive systems is treated in the course ‘Chemical Reaction Engineering’. In this 
chapter, first the similarities between molecular heat and mass transfer processes are indicated. 
The analogy holds for diluted one-phase systems. For two-phase systems one has to take the 
effect of the distribution coefficient (i.e. different solubility in different phases) into account and 
for undiluted systems drift-fluxes may become important. This is discussed in the second part 
of this chapter. 
 
Molecular mass transport, or diffusion, is caused by differences in composition, i.e. mole or 
mass fraction gradients, and is related to the mobility of molecules. More fundamentally, the 
driving force for molecular mass transport is the difference in chemical potential of a 
component. However, for ideal systems the gradient in chemical potential is linearly related to 
the gradient in the mole fraction, and when a constant total concentration can be assumed, also 
linearly related to the gradient in the concentration of the component to be transferred, as 
described by Fick’s law (equation (11.1)). This mobility of a component differs strongly between 
gasses, fluids and solids, which results in large differences in their respective diffusion 
coefficients (see Table 11.1). For gasses, the diffusion coefficients are in the same order of 
magnitude as thermal diffusivity coefficients, while for fluids and solids the diffusion coefficients 
are in general much smaller than the thermal diffusivities. Therefore, in liquids, convective 
transport dominates molecular transport earlier (i.e. at lower fluid velocity) in mass transport 
than in heat transport. 
 

Table 11.1   Typical values for diffusion coefficients ( ). 

Medium Typical values 

Gasses  

Fluids  

Solids  

 
 
A major difference between molecular mass transport and molecular transport of thermal 
energy, is that in the case of mass transport in two-phase systems, there is generally a 
concentration jump at the interface of two media, due to differences in solubility of the solute 
in different solvents The ratio of concentrations at the interface is defined as the distribution 

D

5 210  D m s−≈
9 210  D m s−≈
10 15 210  to 10  D m s− −≈
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coefficient , and will play an important role in mass transfer between two phases, as will be 

discussed in the second part of this chapter. 
 
Finally, next to the effect of the distribution coefficient , there is an additional discrepancy 

in the description of heat and mass transfer processes for undiluted systems. Fick’s law (given 
by equation (11.1)), is strictly speaking only valid for situations in which there is no net transport 
through the considered surface. In practice, however, we are often confronted with systems in 
which this condition is not met. For example, in (selective) absorption and extraction, and 
distillation, the net transport of one of the components of a mixture is always principally 
unequal to zero. Also in heterogeneously catalyzed reactions, the mole fluxes of the reactants 
and products are generally unequal. When describing mass transport in these systems, the 
dragging of mass by a drift flux needs to be taken into account. The drift flux is caused by the 
mass transport itself. This dragging of mass in the drift flux must not be confused with 
convective mass transport as a consequence of (for example) an externally applied pressure 
gradient, because the drift flux is internally generated. The discussion of this phenomenon will 
in this course be restricted to binary systems. It will be shown that the effects of drift-fluxes are 
only important in undiluted systems. 
 

11.2  Molecular transport in one-phase diluted systems 

11.2.1 Stationary diffusion 

For equimolar diffusion or diffusion in diluted systems (i.e. low mole fractions), molecular mass 
transport can be described with Fick’s law, which gives a relation between the mole flux  

of a component  and the concentration gradient  of this component: 

 
 

 (11.1) 

 
Fick’s law is in fact fully analogous to Fourier’s law, which gives a relation between the heat flux 

 and the temperature gradient : 

 
 

 (11.2) 

 
For constant , Fourier’s law can be written in a form which more clearly shows the analogy: 

 
 

 (11.3) 
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In Table 11.2, the rules of correspondence for molecular mass transport (Fick’s law) and 
molecular heat transport (Fourier’s law) are summarized. Note that  represents a kind of 

energy concentration (J/m3). 
 

Table 11.2   Rules of correspondence for molecular mass and energy transport in one-phase diluted systems 

Mass transport Energy transport 

  

  

  

 
The examples of stationary heat conduction, discussed in paragraph 0, can be directly 
“translated” to the corresponding stationary diffusion problem, using the correspondence rules 
stated in Table 11.2. For example, the steady mole flow permeated through a cylindrical dense 
membrane can be easily derived from equation (7.24) to be  
 

 
 (11.4) 

 
upon substitution of the correspondence rules given in Table 11.2. 
 

11.2.2 Instationary diffusion 

The results that are obtained in paragraph 7.2.5 for instationary one-dimensional heat transport 
can, using the same rules of correspondence as listed in Table 11.2, be applied for the discussion 
of instationary one-dimensional mass transport, provided that the concentration of the 
transported component is small. For instationary one-dimensional mass transport in diluted 
systems, the second law of Fick holds: 
 

 
 

(11.5) 

 
Fick’s second law is completely analogous to Fourier’s differential equation (equation (7.41)) as 
can be easily seen when using the rules of correspondence from Table 11.2. Alternatively, 
equation (11.5) can be derived based on an instationary mass balance for component . To solve 
equation (11.5), appropriate boundary conditions (i.e. one initial and two boundary conditions) 
need to be specified. Analogous to the situation of instationary heat conduction, a distinction is 
made between mass penetration in a “semi-infinite” body and in a finite body, which is reflected 
in the difference in boundary conditions.  
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Mass penetration in a ‘semi-infinite’ body 

The solution of (11.5) with the appropriate boundary conditions for penetration in a ‘semi-
infinite’ object completely analogous to (7.43)-(7.45) is given by: 
 

 

 
(11.6) 

 
In this equation,  is the initial concentration of  in the regarded material and  is the 

applied concentration on  in the same material. Note that  and  correspond to  

and , respectively. The expression for the momentary mole flux at , , can be 

derived using Fick’s law, resulting in: 
 

 

 
(11.7) 

 
The (time-)average mole flux , which occurs over a certain time  (from ), can be 

then be found from the momentary mole flux by integration over time: 
 

 

 (11.8) 

 
and the expression for the mass penetration depth  is given by: 

 
 

 (11.9) 

 
The mass penetration depth  plays an important role in determining the boundary of the 

applicability of the penetration theory for the description of instationary molecular mass 
transport. When the mass penetration depth  is smaller than (or equal to) the characteristic 

size  of the body, the penetration theory may be applied: 
 

 

 
(11.10) 

 
In the case of single-sided mass penetration,  equals the total thickness  of the material, 
while in two-sided mass penetration,  equals half of the thickness  of the material.  
 
Condition (11.10) can also be expressed in dimensionless form using the Fourier number: 
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 (11.11) 

 
Note that here the Fourier number is defined differently (but fully analogous) to the case of heat 
transfer. The Fourier number here represents the ratio between the process time  and the 
characteristic time for diffusion . In liquids and solids, diffusion coefficients are generally 

much smaller than the thermal diffusivity, so that the penetration theory for mass transport is 
applicable for longer process times than for heat transport. 
 
Analogous to heat transport, the momentary and time-average mole fluxes can also be 
expressed with a mass transfer coefficient . This variable represents the mole flux  per 

unit driving force : 

 
 (11.12) 

 
For the driving force , generally the difference between the applied concentration  and 

the average concentration of the body  is taken. Because both concentrations are based on 

the same phase, the distribution coefficient  does not appear in the expression for the 

driving force. Under the conditions in which the penetration theory is valid, the driving force 
can be approximated by  so that for the momentary and time-average mass transfer 

coefficients follows: 
 

 

 
(11.13) 

 

 
(11.14) 

 
The expressions for the momentary and time-average mass transfer coefficients can also be 
expressed in dimensionless form, introducing the Sherwood number : 
 

 

 
(11.15) 

 

 
(11.16) 

 
 
 
The Sherwood number  in equation (11.15) corresponds to the Nusselt number  and 
gives here the ratio of the stationary diffusion resistance ( ) and the instationary diffusion 
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resistance ( ). Comparing (11.15) and (11.16) to (7.61) and (7.62) learns (with: 

) that the mass transfer coefficients  and  correspond to  

and , respectively.  

 

11.2.2.1 Mass penetration in a finite medium 

For the description of mass transport in a finite body in which the boundary conditions are 
analogous to (7.64) and (7.65), all analytical and graphical results that are obtained for heat 
penetration in a finite body can be used, taking the rules of correspondence of Table 11.3 into 
account. Newman’s rules can also be applied for systems in which there is simultaneous mass 
transport in several directions. Note that the rules of correspondence do not imply that the 
value of Sh and Nu are necessarily identical! 
 

Table 11.3   Rules of correspondence 

Mass transport Heat transport 

  

  

  

  

  

  

 

11.2.2.2 Example of instationary mass transport in a very long cylinder: 

Question: 
A very long porous cylinder with radius  is drenched with a saline solution (initial salt 

concentration ). At time , the cylinder is placed in flowing “clean” water. 

The water flows around the cylinder in such a way that the concentration of the dissolved salt 
is negligible at the surface of the cylinder. The diffusion coefficient of salt in water is  
 
a)  Calculate the mass transfer coefficient for the mass transport from the cylinder to  
             the surrounding water, 15 minutes after bringing the cylinder in contact with the water. 
 
b) How much time does it take to remove 99% of the initially present salt? 
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Solution: 
In this case, the mass transfer from the cylinder to the surrounding water is completely 
determined by the diffusion inside the cylinder, because the concentration at the cylinder 
surface was given to be equal to the bulk concentration ( ) of the water. Inside the cylinder, 
there will in principle be molecular mass transport both in the radial direction and in the axial 
direction. However, for a very long cylinder, the radial mass transport will dominate. For the 
radial mass transport  is the “natural” symmetry line, so that the radius  is the 
characteristic length in Fourier’s number: 
 

 
 (11.17) 

 
This -value is low enough to allow application of the penetration theory for the calculation 
of the desired (momentary) mass transfer coefficient : 
 

 

 
(11.18) 

 
When 99% is to be removed, the penetration theory will no longer be applicable. First, the -
value  (dimensionless driving force) is calculated which corresponds to a degree of removal of 
99%. The degree of removal can be associated with : 

 
 

 (11.19) 

 
In which  is the initial salt concentration in the cylinder,  is the imposed concentration 

and is in this exercise equal to the bulk concentration of the salt in the surrounding water and 

 is the average concentration of the salt in the cylinder. Using Figure 7.9, the  number 

can be determined (take the  line for a cylinder): 

 
 (11.20) 

 

From this  number follows a time of . This high value for the process 
time is quite characteristic for diffusion phenomena and is related to the extremely low value 
of the diffusion coefficient. Finally, note that the maximum mole fraction of the salt in the 
solution below 2%, so that a Fickian description of the mass transport is allowed (see also 
paragraph 11.4). 

 
 (11.21) 
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11.3 Two phase systems: the effect of the distribution coefficient 

The system displayed in Figure 7.2, showing conductive heat transport in a composite material 
(i.e. different layers with different thermal conductivities) cannot be directly ‘translated’ to the 
mass transfer analogy of  molecular mass transport between different phases using the rules of 
correspondence listed in Table 11.3, because the diffusing component generally has different 
solubilities in the different layers. This difference in solubility in different phases, described with 
the distribution coefficient , results in a concentration jump at the boundaries between the 

two layers. Obviously in conductive heat transport in a composite material, the temperature 
profile is continuous across the interface. 
 
To study the effect of the distribution coefficient  on the overall mass transfer rate, we study 

the stationary diffusion of component  in a composite material that is composed of layer “1” 
and layer “2” (see Figure 11.1).  The solubilities of component  are different for layer “1” and 
layer “2” and are related by the distribution coefficient (sometimes also referred to as the 
partition coefficient) : 

 

 (11.22) 

 
Note that for heat transfer holds:  (no temperature jump at boundaries between two 

phases). Using stationary differential mass balances we can deduce, fully analogously to 
stationary heat conduction in a flat plate, that the mole flux of  in both layers should be 
constant: 
 

 
 (11.23) 

 
No mass can disappear during the transport from layer  to layer (also no accumulation 
at the interface in the steady state), hence the constants  and  are equal: , or: 

. 

 
Based on Fick’s law, it can be concluded that the concentration profile in both layers is linear.  
Using Figure 11.1, the following expressions for the mole fluxes are obtained: 
 

 
 (11.24) 

And: 
 

 (11.24) 
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If equilibrium is reached at the interface between the two layers, which is generally assumed, 
the following expression can be derived for the (overall) mole flux of  (try this for yourself!): 
 

 

 (11.26) 

 
where  is the overall mass transfer coefficient related to layer : 

 
 

 (11.27) 

 

And  is a fictitious concentration related to layer  which is in equilibrium with the actual 

concentration in layer , : 

 
 

 (11.28) 
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Figure 11.1   Diffusion in a composite material in which the thickness and the diffusion coefficient of  differs per 
layer. Additionally,  has a different solubility in layers  and . 
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Analogously, equation (11.26) can also be written in a completely equivalent following form, 
using the concentrations and the overall mass transfer coefficient related to layer : 
 

 
 (11.29) 

 

Here  is the overall mass transfer coefficient related to layer : 
 

 
 (11.30) 

 

And  is a (fictitious) concentration related to layer  which is in equilibrium with the actual 

concentration in layer , : 

 
 (11.31) 

 

Equations (11.26) and (11.29) can be interpreted in terms of Ohm’s law: the mole flux of  is 
the ratio of a driving force  or  and an overall mass transfer resistance 

 or . Note that the driving force is not simply the concentration difference 

between the two layers, but an altered expression taking into account the differences in 
solubility. That this is required can easily be understood when considering the mass transfer of 
a component from one phase to another, where the solubility of the component in the first 
phase is very low and in the second phase very high (i.e. Kd  is very large): without properly 
accounting for the effect of the distribution coefficient on the driving force, one could easily 
predict mass transfer in the wrong direction once the concentration of the component in the 
second phase starts building up. In this case there is mass transfer from a phase with low 
concentration to a phase with a high concentration (due to the much higher solubility)! The total 
mass transfer resistance (with the dimension ) is equal to the sum of the partial mass 

transfer resistances  for layer  and  for layer , with a correction for 

the difference in solubility. Note that the effect of the distribution coefficient  on the overall 

mass transfer resistance is such, that the mass transfer resistance shifts to the phase in which 
 has the lowest solubility: 
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Check for yourself that this outcome is independent of taking equation (11.27) or (11.30) as the 
starting point. Finally it is noted, that the results discussed in this paragraph can be generalized 
from stationary diffusion resistances to other mass transfer resistances (viz. instationary 

diffusion, free or forced convection) by changing  to and  to . 
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11.4 Undiluted systems: the effect of drift fluxes 

In addition to the effect of the distribution coefficient , there is an additional discrepancy in 

the description of heat and mass transfer processes for undiluted systems. Due to a net 
transport of one of the components of a mixture (e.g. from one phase to another or to and from 
a catalytic surface), the total mole flux is unequal to zero, which necessitates the extension of 
Fick’s law to account for these drift-fluxes. 
 
In the following sections we will make a distinction between diffusion in liquids and solids on 
the one hand and diffusion in gasses on the other hand. This distinction is not fundamental, but 
has to do with the choice of the measure of concentration with which the diffusion is usually 
described: in liquids and solids, the density  is often used as a measure of concentration of 

component  (  is the amount of i in per unit volume of the mixture), while in gasses the 

concentration  (  is the number of   per unit volume of the mixture) is often used or 

the partial pressure Pi. 
 

11.4.1 Diffusion in liquids and solids 

For diffusion in a liquid which consists of two components  and , the following expressions 
are valid for the mass fluxes of  and : 
 

 
 (11.33) 

 
 

 (11.34) 

 

Here  is the total density , which has been assumed constant, and  and 

 are the binary diffusion coefficients of  and  in the mixture, respectively. The first terms 

on the right hand side of (11.33) and (11.34) describe the molecular transport due to the density 
gradients of  and , while the second terms in these equations describe the molecular 
transport as a consequence of  the so-called drift fluxes. When the sum of the mass fluxes is 
equal to zero, equations (11.33) and (11.34) reduce to Fick’s law and the system. Note that for 
diffusion in diluted systems (  or ), the mass transport can also be 

described by Fick’s law. It can be proven that the binary diffusion coefficients  and  are 

equal to each other: 
 

 
 

 (11.35) 
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11.4.2 Diffusion in gases 

For diffusion in a gas which consists of two components  and , the following expressions 
are valid for the mole fluxes of  and : 
 

 
 (11.36) 

 
 

 (11.37) 

 

where , the total concentration  has been assumed constant, and  and  

are the binary diffusion coefficients of  and  in the mixture, respectively. The first terms of 
the right hand side of (11.36) and (11.37) describe again the molecular transport resulting from 
the concentration gradients of  and , while the second terms in these equations describe 
the molecular transport as a consequence of dragging (the so-called drift fluxes). When the sum 
of the mole fluxes is equal to zero, (11.36) and (11.37) reduce to Fick’s law and this case is 
reffered to “equimolar diffusion”, which will be investigated in the next section. Note that for 
diffusion in diluted systems (  or ), the mass transport can also be described 

by Fick’s law. Again the binary diffusion coefficients  and  are equal: 

 
 (11.38) 

 
For an ideal gas, the total concentration  is proportional to the total pressure  and because 
pressure balancing in gasses is very fast with respect to (molecular) mass transport, the 
assumption of a constant total concentration  can often be justified. Using the example of 
binary gas diffusion, the cases of equimolar and non-equimolar diffusion will now be compared. 
 

11.4.3 Example of equimolar diffusion 

Two vessels  and contain a mixture of two ideal gases A and B. The total pressure  and 

the temperature T are equal in both vessels, the partial pressures of A and B (indicated with  

and ) are kept constant in both vessels, see Figure 11.2. Vessel  contains a relatively high 

amount of A ( ), while vessel  contains a relatively high amount of B (

). Both vessels are free of concentration gradients due to good mixing. The two vessels are 
connected through a tube with a constant diameter. Because of the differences in partial 
pressure (concentration gradients) there is transport of  (from  to ) and  (from 
to ) , while the total pressure  is constant. 
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Figure 11.2   Diffusion in a binary system at constant pressure and temperature. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Because  and , in this system an equal amount of  molecules has to 

be transported from  to  as  molecules from to (otherwise the total pressure 
would not be constant), i.e.: 
 

 
 (11.39) 

 
This means that equations (11.36) and (11.37), because of the equimolar diffusion in this 
situation, reduce to: 
 

 
 

(11.40) 

And: 
 

 
(11.41) 

 
Having used . When expressions (11.40) and (11.41) are combined with the 

respective stationary differential component balances (constant mole fluxes of A and B inside 
the connection tube), the following differential equations are obtained for the partial pressures 
of  and  in the tube: 

 
 

(11.42) 

With boundary conditions: 
 

 (11.43) 
 

 (11.44) 
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From equation (11.42) follows that the profiles of the partial pressures of  and  in the tube 
are linear. From the solution of equation (11.42) with boundary conditions (11.43) and (11.44), 
the following expressions for the mole fluxes of  and  in the tube can be obtained (check 
this yourself!): 

 
 (11.45) 

 
 (11.46) 

11.4.4  Example of non-equimolar diffusion 

The phenomenon of non-equimolar diffusion is discussed using the example of the evaporation 
of a volatile component  into an inert gas . The set-up as shown in Figure 11.2 is adjusted 
so that the tube before  is in contact with pure liquid , while the tube before  is 

in contact with a mixture of  and . The total pressure  and the temperature  are both 

constant (i.e. independent of ). At , the partial pressure of  is equal to the saturation 

pressure of  at the prevailing temperature ( , ), while at , the 

partial pressure of  is smaller than the saturation pressure ( ,

). In Figure 11.3, the adjusted set-up is shown. The volatile component, 

which is at the bottom of a vertical tube, evaporates at the interface at , diffuses due to 

the partial pressure gradient perpendicularly to the interface and is taken up by a gas flow of 
constant composition at . 

 
For the stationary situation we can easily derive again that the mole fluxes of  and  in the 
tube are constant: 

 
 

(11.47) 

 
 

(11.48) 
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Figure 11.3   Evaporation of a volatile component  in a vertical tube. A
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Because the interface  is impenetrable to  (i.e. B does not dissolve in liquid A), the mole 

flux of  must be equal to zero because of equation (11.48): . This means that 

equations (11.36) and (11.37), because of the non-equimolar diffusion in this situation, reduce 
to: 
 

 
 (11.49) 

 
 

 (11.50) 

 
From equation (11.49) it follows that the transport of  is partly due to molecular transport 
because of a concentration gradient of  and partly due to drift-fluxes. Although also for 
component  molecular transport occurs due to a concentration gradient of , this transport 
is canceled out by the molecular transport of  due to the drift-fluxes in the opposite direction. 
 
Rewriting equation (11.49) to obtain for the mole flux of : 
 

 
 (11.51) 

 
Combining equation (11.49) with the stationary differential component balance of  yields 
upon integration the following expression for the partial pressure profile of  in the tube: 
 

 

 
(11.52) 

Using , from (11.52) the profile of the partial pressure of  in the tube can be 

derived: 
 

 

 
(11.53) 

 
From equations (11.52) and (11.53) follows, contrary to the situation of equimolar diffusion, 

that the partial pressure profiles  and  are non-linear for the systems with non-

equimolar diffusion. In Figure 11.4, the partial profile pressures are illustrated for both 
equimolar and non-equimolar diffusion. 
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Using equations (11.51) and (11.52), the following expression for the mole flux of the 
evaporating component  can be obtained: 
 

 

 
(11.54) 

 
For equimolar diffusion we had already found: 
 

 
 (11.55) 

 
To get insight into the extent to which the mole flux for non-equimolar diffusion differs from the 
mole flux for equimolar diffusion, the Stefan-factor  is introduced and is defined as: 

 
 

 (11.56) 
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Figure 11.4   Partial pressure profiles for equimolar and non-equimolar diffusion in a binary system 
composed of components  and . A B
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Substituting equations (11.54) and (11.55) into the definition equation (11.56) gives: 
 

 ( )
( )

( )
( ) ...1

pp
pp

3
1

)pp(
p

pp
ppp

2
11

pp
pp

ln
pp

pf
3

1

21
2

1

2
1

2
1

21

1,A

2,A

2,A1,A
d +=








−
−

+
−

−
−

+⋅
+=











−

−

−
=

 
 

(11.57) 

 
For the Stefan-factor  holds: , so that the mole flux of  for non-equimolar diffusion 

is always larger than the mole flux for equimolar diffusion. This can be easily understood, 
because in the situation of non-equimolar diffusion, additional transport occurs as a 
consequence of the drift flux. From (11.57) follows that for relatively low partial pressures of  
(with respect to the total pressure ), i.e. diluted systems, the Stefan-factor  is practically 

equal to 1, which means that the diffusion process can be described by Fick’s law with good 
accuracy. 
 
 

11.4.5 Maxwell-Stefan equations 

One often has to deal with multi-component systems in which the components are divided over 
one or more phases and in which transport occurs under instationary conditions and possibly 
together with other transport mechanisms (e.g. convection) and/or in interaction with other 
transport phenomena (e.g. heat transport). For the description of (non-ideal) multi-component 
systems one principally uses the generalized form of the flux equations (11.33)-(11.34) and 
(11.36)-(11.37), which are known as the Maxwell-Stefan equations. These flux equations need 
to be solved simultaneously with the component balances (and possibly the heat balances). A 
detailed discussion on the Maxwell-Stefan equations is outside the scope of this course. 
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12  Convective mass transport 

 

12.1 Mass transfer analogy of Newton’s cooling law 
In process equipment often situations occur in which there is mass exchange with a fixed or 
movable system wall (boundaries). Well known practical examples of mass exchange through 
boundaries are distillation, absorption and extraction. The absolute amount of mass which is 
exchanged per unit time is defined analogous to the description of heat transport through 
system walls in terms of an average mass transfer coefficient , the mass-exchanging area  
and the (absolute) average driving force, which can be based on density gradients (number of 

 component  per ) 
 
or concentration gradients (number of  of 

component  per ) : 

 
 

 (12.1) 

 
 

 (12.2) 

 
In these equations,  and  are the wall (or interface) concentrations of the transported 

component  and  and  are the average concentrations of this component in the 

flowing medium. Equations (12.1) and (12.2) can also be expressed in terms of a mass flux or a 
mole flux: 
 
 

 (12.3) 

 
 

 (12.4) 

 
Often, the mass transfer coefficients are used in dimensionless form using the already 
introduced Sherwood number : 
 
 

 
(12.5) 
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12.2 Analogy between mass and heat transfer 
For convective mass transport, the analogy between heat and mass transfer processes, i.e. the 
rules of correspondence in Table 11.3, can be fully exploited, so that for all the basic principles 
we simply refer the reader the description of forced and free convective heat transfer (Chapters 
8 and 9).  
 
Thus, when for a certain geometry the rate of heat transport can be described with a 
dimensionless correlation of the form: 
 
 

 (12.6) 

 
then, based on the rules of correspondence in Table 11.3, it can be concluded that the mass 
transfer rate, for the same geometry and boundary conditions, can be described with a 
dimensionless correlation of the form: 
 
 

 (12.7) 

 
Here the Schmidt number, , the ratio of molecular momentum transport rate to the 

molecular mass transport rate, takes over the role that the Prandtl number, , plays in 

heat transport. The Schmidt number  is typically approximately 1 for gases, while  is 
between 100 and 1000 for normal liquids. 
 
The function f1 for heat transport can be used for the description of mass transport f2, 
provided that the mass transfer process is indeed completely analogous to the heat transfer 
processes, in which case f1 = f2 . This is valid if the following conditions are met: 
 
• There are no chemical reactions. 

• The flow regimes are identical. 

• There is no significant transport by radiation. 

• The transport is in only one phase (  effect) 

• The relative concentrations of the diffusing components are small (i.e. Fick’s law applies). 

• The transfer must involve the same wall-type (fixed/moving). 

• The Prandtl number  and the Schmidt number  have the same order of magnitude. 

• The dependence on temperature or composition of the transport variables for heat    

      transport and mass transport, respectively, should not differ too much. 
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12.2.1 The Chilton-Colburn analogy 
The analogy between heat and mass transport is especially useful when e.g. mass transfer 
coefficients k can be calculated from theoretical (i.e. in the form of correlations or graphs) or 
experimental data on heat transfer coefficients  and vice versa. In the discussion of 
convective heat transport it was already found that -correlations have the following general 
form: 
 

 
(12.8) 

 

When the abovementioned conditions are satisfied, the correlation for the analogous mass 
transport process the following relation will have the following form: 
 

 
 

(12.9) 
 

The value for the exponent  is in principle  for fixed walls and  for moving walls. 
Equations (12.8) and (12.9) are used for a further consideration of the analogy between heat 
and mass transport which was first proposed by Chilton and Colburn.  
 
When dividing equation (12.8) by equation (12.9) we obtain 
 
 

 (12.10) 

 
In the Chilton-Colburn analogy it is assumed that: 
1. The transport occurs at fixed walls (exponent ) 
2. The constant  in (12.8) and (12.9) is either absent or negligible with respect to the second 
(convective) term (i.e. sufficiently large -numbers). 
 

Then equation (12.10) reduces to  
 

 (12.11) 

Substituting the definitions for Nu and Sh, we can finally derive the following correlation 
between the heat transfer coefficient  and the mass transfer coefficient  (check this!): 
 

 
(12.12) 

where the dimensionless Lewis number, , has been introduced. Interestingly, 

equation (12.12) shows that the ratio of heat and mass transfer coefficients only depends on 
material properties. Of course, the Chilton-Colburn analogy can be extended to other 
correlations with a different exponent n for the Prandtl and Schmidt numbers, resulting in a 
similar correlation to relate the heat and mass transfer coefficients as equation (12.12), 
however, where the power 2/3 of the Lewis number is replaced by (1-n). 
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With regard to the Chilton-Colburn analogy, it is noted that the analogy is applicable for both 
laminar and turbulent flows. Only when using the analogy for laminar flows one needs to take 
into consideration that the length required to have thermally fully developed flow could be 
different from the length required to have mass-transfer fully developed flow, and that the 
analogy only holds if the flow regime is completely identical. For example, for the description 
of mass transport in laminar flow through a tube,  needs to be replaced by  in the Graetz-

number. Because for liquids , the local -number will become constant “later”, i.e. for 
a larger . For gases, , so there is no difference with regard to position at which the 

Sherwood resp. Nusselt number become  constant. 
 
The analogy between heat and mass transport is also valid for free convection. In free 
convection due to mass transport, density gradients are due to concentration gradients. In 
principle, the -correlations given in Chapter 9 can also be used for the description of mass 
transport, given that, in the case the free convection is driven by differences in overall density 
due to concentration differences, the Grashof number  needs to be defined as: 

 
 

 (12.13) 

 
In this equation,  and  are the density at the mass transferring wall and the density at 

large distance of the mass transferring wall/interface, respectively. When applying the Chilton-
Colburn analogy for these systems, take the different values for the power  of the Prandtl 
number into account. In systems in which coupled heat and mass transfer occurs (see Chapter 
13) the density gradient is caused by both temperature and concentration gradients and the 
presented form of the Chilton-Colburn analogy is not readily applicable. 
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13 Coupled heat and mass transport 

The transport of mass from one phase to the other is principally coupled with a heat effect. 
Examples are evaporation, sublimation or dissolving a gas or a solid in a liquid. In these types of 
processes, the occurring heat and mass fluxes through the boundaries are coupled by the heat 
of evaporation, heat of sublimation and heat of dissolution, respectively. The temperature at 
the interface adjusts to a value that depends on the rate of heat removal (in the case of a positive 
heat effect, i.e. an exothermic process: ) or the rate of heat supply (in the case of a 
negative heat effect, i.e. an endothermic process: ). Note that the abovementioned 
processes are caused by concentration or density gradients, and that the required heat 
transport is a consequence. Next to the coupling of heat and mass fluxes via the enthalpy change 

 of the phase transition, there is a second coupling, because the saturation partial pressure 
/ concentration at the interface depends on the temperature, given by an equilibrium relation 
(from thermodynamics): 
 
• In evaporation and sublimation, the partial pressure at the interface is a function of 

temperature (Clausius-Clapeyron equation). 
• In dissolving a gas or solid in a liquid, the concentration at the interface is a function of 

temperature. 
 
The analysis of processes with coupled heat and mass transport will be carried out using the 
example of evaporation. As a model system we choose a spherical rain droplet falling through 
unsaturated humid air. 
 

13.1 Example: Droplet evaporation 

13.1.1 Qualitative description 

Consider a rain droplet falling through unsaturated humid air. Initially, the falling raindrop and 
the surrounding air have the same temperature, . At the surface of the droplet, the saturation 

vapor pressure will be reached, which is coupled to  via the equilibrium relation. Because the 

surrounding air is not saturated with water, the vapor pressure (concentration) of water at the 
droplet surface is higher than the vapor pressure (concentration) in the bulk of the surrounding 
air, which induces water transport from the droplet surface to the bulk of the surrounding air. 
The decreasing concentration of water at the droplet surface will be counteracted by 
evaporation of the droplet. Heat is needed for this evaporation and because initially this heat 
cannot be supplied by the surrounding air, the droplet will have to supply the required heat of 
evaporation and its temperature will decrease slightly. Because of the developed temperature 
gradient, the surrounding air will start supplying heat for the evaporation. Both the droplet and 
the surrounding air are now supplying heat for the evaporation process, but because the droplet 
cools down further, the contribution of the surrounding air to the heat supply increases. When 
the amount of water that evaporates per unit time is assumed to be equal to the initial 
evaporation rate, this eventually leads to a state in which the droplet temperature has 

0H∆ <
0H∆ >

H∆

0T
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decreased so much that the surrounding air can supply all the necessary heat for evaporation. 
In practice, the temperature of the droplet will not have to decrease this much because of the 
equilibrium relation between the droplet temperature and the saturation vapor pressure. When 
the droplet temperature decreases, the vapor pressure of water at the droplet surface will also 
decrease and because of this, the driving force for the evaporation will also decrease. Because 
of the decreasing driving force, the evaporation rate will decrease, so that the equilibrium 
situation, in which the surrounding air supplies all heat for evaporation, is reached earlier. 
 

13.1.2 Quantitative description 

For a quantitative description of the coupled heat and mass transfer of an evaporating droplet, 
the described equilibrium situation (see Figure 13.1 with A = H2O)  is assumed. 
 

 
 
 
For the description we have two equations clearly showing the coupling between heat and mass 
transfer: 
 

 
 (13.1) 

 
 

 (13.2) 

 
Furthermore, we have expressions for the heat flux  and the mole flux : 

 
  (13.3) 

 
 

 (13.4) 
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Figure 13.1   Coupled heat and mass transfer in the evaporation of a droplet 
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In these equations,  is the molar heat of evaporation of  at ,  is the equilibrium 

relation,  and  are the heat and mass transfer coefficients, respectively. Filling in the flux 
equations (13.3) and (13.4) into equation (13.1), which describes the coupling between the heat 
and mole fluxes, gives: 
 

 

 
(13.5) 

 
The partial pressure at the droplet surface  is a function of the temperature at this surface 

 according to the equilibrium relation (13.2). When  and  do not differ too much,  

and  in the numerator of the left hand side of equation (13.5) can be replaced by the linear 

average  of  and  , i.e. , so that this equation can be 

(approximately) written as: 
 

 (13.6) 

 
In this equation,  and  relate to the same geometry and the same flow regime (i.e. the same 

-number). When the conditions are met to apply the Chilton-Colburn analogy, equation 
(12.12) holds for the relation between the heat and mass transfer coefficient. Combination of 
equation (12.12) and (13.6) yields: 
 

 
 (13.7) 

 
In which  is the Lewis number: . The Lewis number  is between  

and  for gases, but is much larger for liquids. Now we have two equations (equations (13.2) 
and (13.7)) to describe this system with four unknown variables ( , ,  and ). This 

allows for elimination of one free variable, so that one of the three remaining variables can be 
calculated if two others are known. This is, for example, used in the measurement of the 
humidity of air with a psychrometer. In this device, two thermometers are used: one 
thermometer measures the air temperature ( ) and the other thermometer is kept wet and 

this temperature ( ) is also measured. Using , a value for the vapor pressure  can be 

determined, using a vapor pressure table (see Table 13.1). Using equation (13.7), the vapor 
pressure of  in the bulk of the air  can be calculated. Note that the determined  does 

not depend on the velocity of the air flow ( ), if the conditions for the analogy between heat 
and mass transport are met. 
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Table 13.1   Equilibrium vapor pressure of water as a function of . 
(To convert from mmHg to kPa, multiply with 0.1333224.) 

    

273 4.58 299 25.21 
275 5.29 301 28.35 
277 6.10 303 31.82 
279 7.01 305 35.66 
281 8.05 307 39.90 
283 9.21 309 44.56 
285 10.52 311 49.69 
287 11.99 313 55.32 
289 13.63 315 61.50 
291 15.48 317 68.26 
293 17.54 319 75.65 
295 19.83 321 83.71 
297 22.38 323 92.51 

 
Temperature  is called the wet-bulb temperature, and should not be confused with another 

important variable, the adiabatic saturation temperature . This is the temperature a gas (e.g. 

air with a temperature  and water vapor pressure ) will attain when it is fully saturated 

with vapor and the gas itself supplies all the necessary heat of evaporation by cooling down 
from  to . Based on an energy balance for the gas, the following equation for the adiabatic 

saturation temperature  (and the matching equilibrium vapor pressure ) can be 

derived (check this yourself!): 
 

 
(13.8) 

 

This equation can, assuming again that  and  do not differ too much, be written in the 

following form: 
 

 (13.9) 

 

With: . Except for the factor , the expression for the adiabatic 

saturation temperature , equation (13.9), corresponds to the expression for the wet-bulb 

temperature  (and the matching ), equation (13.7). The transport coefficients  and  

have no influence on the magnitude of , but they do have an influence on the rate at which 

 is reached. For all gas mixtures,  is close to 1, and for the system air/water vapor 
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. This is the reason for the fact that sometimes there is made no distinction 

between  and , although they are of a very different origin. 

 

13.2 Humidity diagram 

At the end of this chapter the so-called humidity diagram is discussed, which is often used for 
calculations in practice. First we introduce the following definitions: 
 
Humidity : the mass of water vapor per  of dry air, so: 

 
 (13.10) 

 
Saturation Humidity : the absolute humidity of air which is saturated with water. For the 

system water/air this is about  at  and  at . For  (s = saturation) holds: 

 
 (13.11) 

 
Relative Humidity : the pressure of water vapor in humid air, divided by the saturation 
pressure of water vapor at the same temperature: 

 
 (13.12) 

 
Humid Heat : the amount of heat required to heat one  of dry air, together with the 

contained water vapor,  at constant pressure. For the system water/air holds at atmospheric 
pressure: 
 

 
 (13.13) 

 
Dew point: the temperature at which the condensation of water vapor commences as humid 
air is cooled down. So the dew point is the temperature at which humid air is saturated with 
water vapor. 
 
Next to the abovementioned definitions, the earlier introduced definitions for the adiabatic 
saturation temperature and the wet-bulb temperature, are important concepts when reading 
the humidity diagram for the water/air system (see Figure 13.2). We had already noted that 
these two variables, although principally different, have almost the same value for the water/air 
system. Using a number of examples, it is clarified how to read the humidity diagram. 
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1. What are the humidity and the relative humidity of air at , which has a wet-bulb 
temperature of ? What is the dew point? 
 
The intersection of the adiabatic saturation line of this air with the saturation line is found at 
the temperature of . We follow the adiabatic saturation line to the right until the 
temperature of  is reached (at the horizontal axis) and at the right vertical axis, we can 
read that the humidity  equals  kg water per kg dry air. From the humidity diagram 
follows that the relative humidity of this air is about . Cooling air increases the relative 
humidity; the absolute humidity is not changed. The humidity diagram shows that air with an 
absolute humidity of  kg water per kg dry air is saturated at . 
 
 
2. The same air is cooled down to . How much water vapor will condense per  of 
saturated air of ? 
 
From the humidity diagram, we read that saturated air of  contains about 0.027  kg water 
per kg dry air. So  kg water per kg dry air is condensed. In the humidity 

diagram we also read that the saturated volume for air of  is about  per kg dry air. 
So the amount of condensed vapor is: 
 

 
 (13.14) 

 
 

70 C°
55 C°

55 C°
70 C°

H 0.105
39%

0.105 53.7 C°

30 C° 3m
30 C°

30 C°
0.105 0.027 0.078− =

30 C° 30.88 m

3

0.078  condensed water0.089   
0.88  saturated air of 30

kg
m C
 =  ° 

Figure 13.2   The humidity diagram for the water/air system at atmospheric pressure. 
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3. The saturated air of  is heated at constant pressure to . How much heat is 
needed to do this and what is the relative humidity and the dew point of the heated air? 
 
During the heating of the air, the humidity  does not change. This humidity stays  kg 
water per kg dry air. The humid heat is equal to  per kg dry air per , according to 

equation (13.13). The required heat is  per kg dry air. The dew point is 

of course , because the air is saturated at . In the humidity diagram we read a relative 
humidity of . 

30 C° 70 C°

H 0.027
1.0513 kJ C°

( )70 30 1.0513 42 kJ− =

30 C° 30 C°
10%
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14 Heat and mass exchange equipment 

14.1 Introduction 

The purpose of many physical and chemical engineering process steps is exchange of mass 
and/or energy between two (or more) different streams. Important examples: heat exchangers 
to heat up a stream by cooling another stream, and bubble, extraction and distillation columns 
and membrane contactors to transfer a component from one phase to another. The 
quantitative description of the occurring processes is discussed for mass exchange equipment, 
which can be very easily ‘translated’ back to describe equivalent heat transfer equipment. 
 
In mass exchange equipment two (or more) phases are brought into contact with one another 
in order to accomplish mass transfer (often selectively of one specific component) from one 
phase to the other. The simplest description of mass exchange equipment is with the so-called 
‘single stream exchanger’, where the concentration of the component to be transferred is 
constant in one of the phases. Sometimes, the description of mass exchange equipment can 
be simplified to the ‘single stream exchanger’, for example in extraction columns with very 
large solvent flows or heat exchangers with extremely large cooling water flows etc. The 
description of single steam exchangers is discussed first, introducing the concepts of the 
number and height of transfer units and the extraction factor on the way.  
Contrary to the situation for a single stream exchanger, in practice we often encounter mass 
exchangers where the concentration of the component that is being transferred varies in all 
phases that are contacted as a consequence of the mass exchange. We will derive the 
equations to describe these two-stream contactors, however, in this course we will restrict the 
discussion to two much encountered types of two-stream-exchangers, which only differ with 
respect to the way of contacting of the two phases: 
 
1. The co-current exchanger: both phases “1” and “2” flow in the same direction. 
2. The counter-current exchanger: both phases “1” and “2” flow in the opposite direction 
 

14.2  Single stream exchanger 

The most basic example of a mass exchanger is the so-called single stream exchanger. In this 
type of exchanger, the concentration of the transferred component is constant (or can be 
approximately assumed constant) in one of the two phases. The following limiting cases can 
be distinguished for the single stream exchanger: 
 
1. The phase with the constant concentration is fixed (e.g. flow through a tube with a 
constant concentration at the tube wall). 
2. The phase with the constant concentration is moving (e.g. bubbles of a pure gas which 
is transferred to the liquid phase in which the bubbles are rising). 
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The single-stream exchanger will be discussed using an example from the first category (see 
Figure 14.1). A fluid (phase 1) with a volumetric flow rate  flows through a round tube with 

inner diameter . The wall of the tube (phase 2) consists of a component  which is soluble 
in the fluid. The concentration of  in phase 2 and the concentration of  in phase 1 at the 
tube wall are coupled via an equilibrium relation: 
 

 

 (14.1) 

 
We will assume that Kd is independent of the composition and that Fick’s law can be applied 
(diluted systems). Moreover, we will assume that the total mole flow that is transferred is 
relatively small compared to the total molar flow rate of the process stream, so that the 
volumetric flow rate is constant along the axial coordinate. Then, the differential mass balance 
for the transferred component  for the single stream exchanger reads (neglecting axial 
diffusion/dispersion): 
 

 
 (14.2) 

 
After separation and integration (assuming constant mass transfer coefficient ), the following 
equation is obtained, which gives the relation between the inlet and outlet concentration: 
 

 

 (14.3) 
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Figure 14.1   Mass exchange between a tube wall (consisting of solid ) and a solution in a single-stream exchanger. A
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The left hand side of equation (14.3) represents the ratio of the driving force for mass transfer 
at  to the driving force for mass transfer at  (i.e. dimensionless driving force). In the 
case of mass transfer in packed beds, the term  (cylindrical contact area) in equation 
(14.3) is replaced by : 
 

 

 (14.4) 

 

where  is the specific mass transfer area (amount of  mass transfer area per  packed 
bed),  is the cross-sectional area of the packed bed and  is the velocity in the empty tube 

or the superficial velocity ( ). 

 
Equation (14.3) or (14.4) can also be written as: 
 

 

 (14.5) 

 
where , the height of a transfer unit, is introduced, which represents the tube length or 
column height (for a packed column) over which the driving force changes with a factor  (≈ 
37%) (for a single stream exchanger). This variable is defined as: 
 

 
 (14.6) 

 
The required tube length to realize a certain relative change of the driving force (concentration 
change) can be expressed in this length unit as the number of ’s,  also called  
(number of transfer units): 
 

 
 

(14.7) 
 
The  is a variable that describes the rate of the mass transfer process: a small value of 
the  corresponds to a high mass transfer rate, while a large value of the  
corresponds to a low mass transfer rate. Note, that in case the overall mass transfer coefficient 
varies along the length of the apparatus, the length-averaged value should be used in the 

. The  describes the extent of mass exchange realized in the mass exchanger. 
Finally, note that for an infinitely long tube, the exit concentration equals the equilibrium 
concentration which occurs in phase 1 at the wall of the tube. 
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14.3 Two-stream co-current exchanger 

In the two-stream co-current exchanger, two phases 1 and 2 with respective volumetric flows 
 and  are contacted co-currently (i.e. flowing in the same direction, so the inlets of 

both streams are at the same side of the equipment and the outlets of both streams are at the 
other side of the equipment) in order to bring about mass exchange of a dissolved component 

 between 1 and 2 (see Figure 14.2). First, the equilibrium situation is discussed, after which 
the equations are derived to describe a co-current exchanger of finite size. 
 

14.3.1 Equilibrium situation 

In an infinitely long co-current mass exchanger, the outlet streams of both phases are in 
thermodynamic equilibrium, i.e.: 
 

 

 (14.8) 

 
Combining this with the integral “overall” mass balance over the mass exchanger, given by: 
 

 
 (14.9) 

 
the following two expressions can be derived for the outlet concentrations in phase 1 and 
phase 2, respectively: 
 

 

 
(14.10) 

 
And: 
 

 

 
(14.11) 

 
where the so-called extraction factor  has been introduced, which is defined as: 
 

 
 (14.12) 
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The extraction factor  is important for the choice of the type of equipment in which the mass 
transfer process is carried out. When component  has to be transferred from phase 2 to a 
“clean” phase 1, according to (14.10) the value of  should be high and the value of  should 

be low in order to reach a high outlet concentration of  in phase 1. This leads to the demand 
 which can be satisfied by dispersing phase 1 (i.e. in the form of small droplets) in 

the continuous phase 2. 
 
If, however, phase 2 should reach a high level of depletion (i.e. a low exit concentration  in 
phase 2), then according to (14.11) both  and  should have a high value, or: . 

When the initial concentration of  in phase 1 is small, then  can be smaller, but because 

of the requirement for , in that case . 
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Figure 14.2   Mass exchange between two phases “1” and “2” in a co-current exchanger. 
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14.3.2 Kinetic description 

In a real device of finite length, thermodynamic equilibrium is not reached and because of this, 
a kinetic description has to be used for the prediction of the exit concentrations. The starting 
point are the differential mass balances for both phases (see Figure 14.2): 
 
Phase 1: 
 

 
 (14.13) 

 
Phase 2: 
 

 
 (14.14) 

 
where  is the specific mass transfer area between phases 1 and 2. For the solution of the 
differential mass balances, the expression for the mole flux through the interface from phase 
1 to phase 2 has to be developed ( ). Consider Figure 14.3, in which the qualitative 

concentration profiles in phases 1 and 2 in the direct vicinity of the interface are illustrated. In 
principle, in both phases 1 and 2 there could be a (partial) mass transfer resistance which 
depends on the respective (partial) mass transfer coefficients  and . 

 
Fully analogous to the derivation of the mole flux for stationary diffusion through a composite 
material (see paragraph 11.3) it can easily be derived that (check this yourself!): 
 

 
 (14.15) 

 

where  is the overall mass transfer coefficient with respect to phase 1 and , a (fictitious) 

concentration of  in phase 1, which is in equilibrium with the local concentration of  in 
phase 2. The overall mass transfer coefficient  with respect to phase 1 is given by: 

 
 

 (14.16) 
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Combination of the mass balance for phase 1, equation (14.13), and the overall expression for 
the mole flux through the interface (14.15) yields in the limit of : 
 

 
 

(14.17) 

 
This differential equation cannot be solved in this form because both the concentrations in 
phase 1 and phase 2 are changing. To solve equation (14.17) the concentration change of  

in phase 1 must be related to the change of the driving force . This relation can 

be obtained by adding up equations (14.13) and (14.14): 
 

 
 

(14.18) 

 
Using the definition of the extraction factor and equation (14.18) the following can be derived: 
 

 
 (14.19) 

 
which we can use to rewrite equation (14.17) in terms of the change of the driving force 

.  
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Figure 14.3    Qualitative illustration of the concentration profiles in phases 1 and 2  
in the direct vicinity of the interface. 



Chapter 14  

204 

Combining equation (14.17) and (14.19) gives the following differential equation after 
separation: 
 

 

 (14.20) 

 
Integration of equation (14.20) from  to  gives: 
 

 

 (14.21) 

 
where  represents the height of a transfer unit related to phase 1. Because there could 

be a mass transfer resistance in both phases 1 and 2, instead of the “partial”  there is an 
“overall”  which is related to phase 1, because the driving force in (14.21) is also related 
to phase 1.  is given by: 

 
 

 (14.22) 

 
When equation (14.21) for the two stream co-current exchanger is compared to equation 
(14.5) for the single stream exchanger, it can be seen that the difference is only the occurrence 
of the extraction factor  as an additional parameter in the equation for the co-current 
exchanger. On basis of an integral mass balance over the column,  can be expressed as a 
function of the inlet and outlet concentrations or equation (14.19) (check this yourself!): 
 

 

 
(14.23) 

 
Fully analogous to the situation for the single stream exchanger, the column length  can be 
expressed as the product of  and  so equation (14.21) can be rewritten as: 

 
 

 (14.24) 

 
After combination with (14.23) the following equation results for the required number of 
transfer units  related to phase 1: 

 

 (14.25) 

( )
( ) ( ),1 ,2 1

,1,1 ,2

1A d A

VA d A

d c K c K aAE dx
c K c

−
= − +

Φ−

0x = x L=

( ) ( ),1 ,2 1
0 0 0

,1 ,2 ,1 1

ln ln 1 1
L L L
A d A A

A d A A V

c K c c K aAL LE E
c K c c HTU

 −  ∆
= = − + = − +    − ∆ Φ  

1HTU
HTU

HTU
1HTU

,1
1

1

vHTU
K aA
Φ

=

E
E

( ) ( )0 0 0
,1 ,2 ,1 ,2

0 0
,1 ,1 ,1 ,1

1
L L L

A d A A d A A A
L L

A A A A

c K c c K c c cE
c c c c

− − − ∆ −∆
+ = =

− −

L

1HTU 1NTU

( ) ( ) 10
1

ln 1 1
L
A

A

c LE E NTU
c HTU

 ∆
= − + = − + ∆ 

1NTU
00 0

,1 ,1
1 0

1

1 ln ln
1

L
A AA A

L L L
A A A A

c cc cLNTU
HTU E c c c c

−   ∆ ∆
= = =   + ∆ ∆ −∆ ∆   



Heat and mass exchange equipment 

205 

Note that the number of transfer units related to phase 1  can be expressed in 

exclusively the inlet and outlet concentrations. 
 
Before an equation is derived for the total amount that is transferred, first the counter-current-
exchanger is considered in very much the same way as the co-current exchanger was 
discussed.  
 

14.4 Two stream counter-current exchanger 

Two phases 1 and 2 with respective volumetric flow rates  and  (both defined positive) 

are contacted counter-currently to bring about exchange of a dissolved component  
between the streams 1 and 2 (see Figure 14.4). In the discussion of the two-stream co-current 
exchanger, the equilibrium situation was considered first, which will occur at the end of an 
infinitely long co-current exchanger, which was followed by a kinetic description. In the two-
stream counter-current exchanger also a thermodynamic equilibrium will be reached, 
however, it is not clear beforehand where this equilibrium is reached. Therefore, for the 
discussion of the counter-current exchanger we will first discuss the kinetic description and 
followed by a discussion on the location where in a counter-current exchanger equilibrium is 
reached.  
 

14.4.1 Kinetic description 

The starting points for the kinetic description are the differential mass balances for both 
phases (see Figure 14.4): 
 
Phase 1: 
 

 
 (14.26) 

Phase 2: 
 

 
 (14.27) 

 
Comparison of these balances with the corresponding mass balances for the co-current 
exchanger shows that the mass balance for phase 1 is unchanged, while a minus-sign appears 
in the mass balance for phase 2. The expression for the mole flux remains obviously 
unchanged. 
 
Summing the two mass balances, equations (14.26) and (14.27), yields 
 

 
 

(14.28) 
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so that with the definition of the extraction factor and equation (14.28) the following can be 
derived: 
 

 
 (14.29) 

 
Note that in the special case of E = 1, the driving force is constant and hence also the mole flux 
from phase 1 to phase 2, , is constant, and equations (14.26) and (14.27) can be 

integrated directly.  
Substitution of equation (14.29) in the differential mass balance for phase 1, equation (14.26), 
gives the following differential equation after separation: 
 

 

 (14.30) 

 
Integration of (14.30) from  to  gives: 
 

 

 (14.31) 
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Figure 14.4   Mass transfer between two phases “1” and “2” in a counter-current exchanger. 
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Analogous to the co-current exchanger, using the integral mass balance over the column or 
equation (14.30), extraction factor  can be expressed as a function of the inlet and outlet 
concentrations: 
 

 

 
(14.32) 

 
After combining (14.31) with (14.32), the following equation results for the required number 
of transfer units related to phase 1  ( ) : 

 
 

 (14.33) 

 
Note that the expressions, expressed in the concentrations at both ends of the exchanger, for 
the number of transfer units  are identical for the co-current exchanger (equation 14.25) 

and the counter-current-exchanger (equation (14.33)). The question where the equilibrium is 
reached in a counter-current exchanger will show the importance of the extraction factor  
again. When equation (14.30) is integrated from  to , the following equation results 
(with respect to equation (14.31) every  is replaced by ): 
 

 

 (14.34) 

 
 
 

14.4.2 Equilibrium situation 

Reaching thermodynamic equilibrium means that the local (i.e. for a certain -value) driving 
force is equal to zero. From equation (14.34) follows that for  the term in the exponent 
is negative, which means that the driving force decreases with increasing ; the 
thermodynamic equilibrium is then reached when this counter-current exchanger is extended 
(infinitely) upwards (in the positive -direction). For  the term in the exponent is positive, 
which means that the driving force decreases with decreasing ; the thermodynamic 
equilibrium is then reached when this exchanger is extended (infinitely) downwards (in the 
negative -direction). 
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14.5 Mass transfer rate and logarithmic mean driving force 

An expression for the amount of  ( ) that is transferred per unit of time in the two 

stream co-current and counter-current exchanger is derived. For both the co-current and the 
counter-current exchanger, the following holds for , using equation (14.25) and (14.33) 

respectively: 
 

 

 (14.35) 

 
In general, the transferred amount of  per unit of time is written as the product of an overall 
mass transfer coefficient related to phase 1 , the mass transfer area  and an (average) 

driving force  (also related to phase 1): 

 
 

 (14.36) 

 
Comparing equation (14.36) (which can be viewed as the definition equation for the average 

driving force , with equation (14.35) after substitution of the HTU1 definition equation 

(14.22), learns that the average driving force  is given by: 

 
 

 (14.37) 

 

This so-called logarithmic mean driving force  (related to phase 1) enables us to 

express the transfer capacity in a overall mass transfer coefficient (related to phase 1), a mass 
transfer area and measurable concentration differences at the inlets and outlets of the mass 
exchanger. The logarithmic mean driving force is an important variable in the design of the 
treated exchangers. You can easily find out yourself that for co-current operation the 
logarithmic mean driving force is smaller than that for counter-current operation, resulting in 
a larger required exchanger length. 
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14.6 Concentration profiles 

In Figure 14.5 concentration profiles are shown for different configurations of exchange 
equipment, where CA,0 denotes the inlet concentration of stream 1. In all cases presented here 
the inlet concentration of stream 2 was selected zero.  
 

 

 

 
 
The following can be concluded: 
 
• The difference in concentration between stream 1 and 2 always decreases for 
increasing axial position for the case of co-current flow. For counter-current exchangers, it 
decreases with increasing position for E < 1, while it increases for E > 1. 
 
• The amount transferred from stream 1 to stream 2 is always larger for counter-current 

exchangers than for co-current exchangers, due to the higher average driving force . 

 
• The axial concentration profiles for NTU1 = 1, E = 2 are identical to those for the case of 
NTU1 = 2 and E = 0.5, if the names of stream 1 and 2 would be swapped and the meaning of 
the y-axis is read as “ ”. For the case E = 2, stream 1 makes up 2/3 of the total fluid 

stream. In the case that E = 0.5, it makes up 1/3 of the total stream. It has decreased with a 

( )A lm
c∆

,01 A Ac c−

Figure 14.5   Axial relative concentration profiles for several selected cases  
for co- and countercurrent exchange equipment. The inlet for stream 1 is always at x/L=0.  
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factor 2 respect to the case E = 2 and hence HTU1 is decreased by the same factor. In order to 
arrive at the same length L of the equipment (and hence the same contact time), NTU1 needs 
to be doubled. 
 
• The factor by which the driving force changes as a function of NTU depends on the 
exact configuration for co- and countercurrent and is not as straightforward as for the case of 
the single stream exchanger. 
 
 
Finally, for the special case that E = 1, a few selected cases are shown in Figure 14.6. The driving 
force for mass transfer is now constant for the case of counter-current contacting. 
 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 14.6   Axial relative concentration profiles for the special case of E = 1  
for co- and countercurrent exchange equipment. The inlet for stream 1 is always at x/L=0.  
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14.7 Summary of exchange equipment 

 
The equations describing single stream and two-stream co-current and counter-current mass 
exchange equipment have been summarized in Table 14.1. 
 
Table 14.1 Summary of equations describing mass exchange equipment 

Single stream exchanger 
Two stream exchanger  
(both co-current and counter-current) 

  

  

 
 
 with   

 

  with  

 
 

 
 
 
Finally, the rules of correspondence to ‘translate’ the above equations for mass exchange 
equipment to the equations for heat exchange equipment have been listed in Table 14.2. 
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